
Int. J. Heat Mass Transfer. Vol, 2, pp. 314-341. Pergamon Press 1961. Printed in Great Britain. 

b = 

bo = 

B = 

C = 

Eu = 

MASS TRANSFER THROUGH LAMINAR BOUNDARY 

LAYERS--3.  SIMILAR SOLUTIONS OF THE 

b-EQUATION 

D. B. SPALDING and H. L.  E V A N S  

Imperial College of Science and Technology, London, S.W.7 

(Received May, 1960) 

Abstract--As a preliminary to the presentation of general methods of mass transfer rate prediction, 
to follow in later papers, a study is made of the "similar" solutions of the differential equations 
governing the distribution of an arbitrary conserved property. The solutions available in the literature 
are collected. New solutions are presented valid for a two-parameter family of velocity distributions. 
It is shown that these suffice for the approximate prediction of the dimensionless conductance for a 

wide range of the variables: Prandtl/Schmidt number, Euler number, and driving force. 

Rrsurar---A titre d'introduction/i la prrsentation des mrthodes grnrrales d'rvaluation du transport 
de mati~re qui doit suivre dans les prochains articles, on a fait ici l'&ude des solutions "similaires'" 
des 6quations diffrrentielles rrgissant la distribution d'une proprirt6 arbitraire qui se conserve. Les 
solutions fournies par la littrrature ont 6t6 rrunies. De nouvelles solutions, vaiables pour une famille 
de distributions de vitesses A deux param~tres sont prrsentres. On montre qu'elles suffisent pour une 
pr6vision approximative de l'rvolution d'un grand nombre de variables: nombres de Prandtl, Schmidt, 

Euler et force dynamique. 

Zusararaenfassung--Als vorl/iufiges Ergebnis sp/iter folgender Arbeiten fiber allgemeine Methoden 
zur Bestimmung des tibertragenen Stoffanteils, wird von ,,fihnlichen" LSsungen der Differential- 
gleichungen berichtet, die massgebend sind fiir die Verteilung einer beliebigen Erhaltungseigenschaft. 
Aus der Literatur verffigbare Lrsungen sind zusammengesteUt. Die Giiltigkeit neuer Lrsungen wird 
fiir eine zweiparamentrige Gruppe der Geschwindigkeitsverteilungen gezeigt. Diese LOsungen reichen 
aus, das dimensionslose Verhalten ftir einen grossen Bereich der Verfindedichen: Prandtlzahl, 

Schmidtzahl, Eulerzahl und der treibenden Kraft angen/ihert vorauszusagen. 

AlmoTanua--Hcxo~a na pe3y~'IbTaTOB ripe3br~lymeii CTaTbII, ;~a~Tcn Ilpe,~BapttTe:IbHOe 
paccMoxpeu~e ofuinx MeTO~OB pacq~Ta cRopocTii MaccoorMeHa, OOHOBaHHblX Ha (,noAorHL~X,, 
pemenrlaX ~rl~pdpepeHlma~t, n1,Ix ypaBHeHrt~ npu nport3Bo~LnLIX cpn3tlqecmtx napaMeTpax. 
Oro6mamTca TaKme pemenna,  nMemmneca B ~rtTepawype. IIpe~Jlomennr~e nos~,re pemeHn~ 
cnpaBe3~nBu nprt 3onymennn XByxnapaMeTpnqHocTrt ceMeiiewBa npo~Haeil CrcopocTH n 
norpannqnoM caoe. IIoHaaano, qTO onH npI~ro~n~ ~13n npnranm~nnoro  ue~cq~va 6eapa.3- 
~epnoro noToRa ~I~a 6oabmoro qnc~a nepeMennux: yneea IIpanaT3n, [Ibm~Ta, 3fiaepa n 

aBn~yme~i cn~u (nepenaaa ;laB3mnnti). 

N O T A T I O N  

Dimens ion l e s s  conserved  p rope r ty  
( equa t i o n  23), ( - -  ) ;  
G r a d i e n t  o f  b ad jacen t  to  the  in terface  
( e q u a t i o n  26), ( - -  ) ;  
D r iv ing  force for  mass  t ransfer  ( equa t ion  
24), ( - - ) ;  
A c o n s t a n t  ( eq u a t i o n  6), (var ious) ;  
D r a g  coefficient (sect ion 5.2), ( - - ) ;  
Eu le r  n u m b e r  ( eq u a t i o n  44), ( - ) ;  

314 

f = D imens ion le s s  s t ream func t ion  
( equa t i on  8) ,  ( - -  ) ;  

f0 = Va lue  o f  f at  in terface  ( equa t ion  12), 
(--) ;  

fo '  = Dimens ion les s  veloci ty grad ien t  at 
interface ( e q u a t i o n  48), ( - -  ) ;  

f o "  = Dimens ion les s  measu re  of  (~Zu/ey ~) at 
in terface  ( equa t ion  48), ( - -  ) ; 

G = To t a l  mass  flux vector  ( equa t ion  1), 
0bm/ft2h);  
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g : Mass-transfer conductance (equation 
31); (lbm/ft~h) ; 
Value of g for B ---- 0 (equation. 57), 
(lbm/ft'h); 

I : Integral expression (equation 51), ( - - ) ;  
J : A coefficient (equation 52), ( - - ) ;  
K = A coefficient (equation 53), ( - - ) ;  
k = A constant, taken equal to zero in bulk 

of paper (equation 20), ( - -  ); 
r h " :  Mass transfer rate per unit interface 

area (equation 4), (lbm/ft2h); 
Exponent (equation 6), ( - - ) ;  
Nusselt number (equation 46), ( - - ) ;  
Any conserved property of the second 
class [1] (equation 1), (various); 
Reynolds number (equation 46), ( - - ) ;  
Velocity component parallel to interface 
(equation 5), fit/h); 
Velocity component normal to inter- 
face (equation 5), fit/h); 
Curvature parameter containing A S 
(equation 63), ( - -  ); 
Curvature parameter containing A 4 
(equation 60), ( - - ) ;  
Parameter measuring rate of growth of 
A 4 (equation 61), ( - - ) ;  
Parameter measuring rate of growth of 
A2 (equation 62), ( - - ) ;  
Distance along interface in main-stream 
direction from start of boundary layer 
(equation 5), (ft); 

= Perpendicular distance from interface 
(equation 4), fit); 

= A constant (equation 9), ( - - ) ;  
= Exchange coefficient ( =  diffusion co- 

efficient × fluid density, or thermal 
conductivity -- specific heat at constant 
pressure) (equation 1), (lbm/ft h); 

= "A"  thickness of the velocity boundary 
layer (section 5.1), fit); 

: Momentum thickness (ft); 
Convection thickness (equation 38), (ft); 
Conduction thickness (equation 33), (ft); 
Dimensionless space co-ordinate 
(equation 8), ( ~ ) ;  
Dynamic viscosity of fluid (equation 
32), 0bm/ft h); 

----- Kinematic viscosity of fluid (equation 
46), fit '/h); 

= Density of fluid (equation 5), (lbm/fta); 

g *  = 

n = 

N u =  

P = 

R e - - =  

u --~ 

v = 

W :  

X : 

Y = 

Z : 

X = 

Y 

~2 
/ I  2 - =  

/ I  4 : 

/L = 

o = Prandtl or Schmidt number (equation 
17), ( - - ) ;  

= A function o f~  (equation 18), ( - - ) ;  
co = Variable proportional to ~/ (equation 

50), ( - - ) ;  

Subscripts 
G = denotes fluid state in main-stream; 
S = denotes fluid state adjacent interface; 
T = denotes fluid state in transferred 

substance; 
0 = denotes interface. 

Also prime ' denotes differentiation with 
respect to ~7. 

1. INTRODUCTION 

1.1. The standard problem o f  mass  transfer theory 
Tins paper is the third in a series devoted to 
methods of predicting mass transfer rates 
through laminar boundary layers. The first two 
papers have been concerned with how the mass 
transfer through the phase interface affects the 
velocity distribution in the boundary layer; 
in these papers the rate of mass transfer was 
supposed known. We now turn to the main 
question: How is the mass transfer rate to be 
calculated ? 

A fairly general answer to the question has 
been given in a recent paper in this journal [1]: 
it is that the prediction of a steady mass transfer 
rate involves the solution of the equation: 

¢ .  ( V P ) - -  V (y (VP)} = 0 (1) 

with boundary conditions: 

in main-stream: P = PG (2) 

in fluid at interface: P ---- Ps (3) 

and 

[r (eV/0y)]s 
rh" -- (4) 

Ps -- PT 

Here P is any conserved property, e.g. enthalpy 
(Btu/lbm) or mass fraction of a 
chemically inert mixture component; 

t ;  is the local total mass flux vector 
(lbra/ft'h); 

~, is the local exchange coefficient 
(diffusion coefficient times mixture den- 
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sity, or thermal conductivity divided 
by specific heat at constant pressure) 
(lbm/ft h); 

~h" is the mass transfer rate, i.e. the compo- 
nent of G normal to the interface and 
directed towards the bulk of the fluid 
(lbm/ftZh) ; 

y is the distance co-ordinate normal to the 
interface which is zero at the interface 
and positive within the fluid (It); 

PG is the value of P within the main-stream 
(outside the boundary layer); 

Ps is the value of P in the fluid immediately 
at the interface; 

PT is the value of P in the transferred 
substance, a concept which is discussed 
in [1]. 

Equation (1) does not stand alone, but must 
be solved simultaneously with the equations of 
momentum and continuity which govern the 
motion of the fluid; for ¢; must be known as a 
function of position if (1) is to be solved for P. 
It is the latter equations which formed the 
subject of Papers 1 and 2 of the series [2, 3]. 

The present paper begins the discussion of 
equation (1) for the particular circumstances 
of the laminar boundary layer. 

1.2. An appreciation of the mathematical problem 
Equation (1) is a partial differential equation, 

the exact solution of which will ordinarily 
require extensive numerical work. Coupled with 
the fact that the momentum equation is of the 
same nature, this difficulty renders the obtaining 
of exact solutions an uneconomic task in most 
circumstances. 

in Paper 1 it was shown how the difficulty 
with the momentum equation has been resolved 
for laminar boundary layers by the introduction 
of approximate methods which greatly reduce 
the labour of computation but still give accept- 
able accuracy in most circumstances. Corres- 
ponding approximate methods exist for equation 
(1) also. 

The approximate method of Paper 1 involved 
the use of auxiliary functions, which were 
derived from a family of exact solutions of  the 
equation of the velocity boundary layer; the 
latter are the so-called "similar" solutions, 

which were discussed in Paper 2 of the present 
series. It will therefore not be surprising to 
find that "similar" solutions of equation (1) 
perform an equally important role in the approxi- 
mate methods of solving this equation. 

The mathematical problem therefore has at 
least two important aspects; one of them 
concerns the obtaining of the family of similar 
solutions; the other concerns the use of the 
resulting fuactions in a general method of mass 
transfer prediction. 

1.3. Purpose and outline of present paper 
In Paper 1 we presented the approximate 

method for calculating the velocity boundary 
layer, and deferred until Paper 2 the detailed 
discussion of the functions derived from the 
similar solutions. In dealing with equation (1) 
however, the reverse procedure is more con- 
venient. The present paper is therefore devoted 
to the similar solutions of equation (1) under 
laminar boundary layer conditions, and to the 
presentation of the important functional 
relationships. The use of these functions in the 
solution of the general problem of mass 
transfer prediction will be dealt with in 
subsequent papers. 

It follows that the present paper is only of 
background interest to those readers who merely 
want to know how to calculate mass transfer 
rates. The paper is chiefly valuable to those who 
wish to know why and under what circumstances 
the procedures which are recommended in 
subsequent papers may be expected to work 
well. 

In discussing the "similar solutions", we shall 
present a compilation of all the relevant data 
which we could find in previously published 
exact solutions. We shall then augment these 
data by Tables calculated by us. 

In Section 2, we have presented the 
mathematics of the similar solutions at some 
length. Although the treatment is novel only in 
detail, we feel that the extended treatment is 
justified by the absence of any single appropriate 
publication to which we could refer. We have 
paid particular attention to the provision of 
formulae permitting transformation from one 
type of notation to another. 

Section 3 contains the compilation of already 
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published data, while Section 4 contains our own 
contributions. We provide graphs, e.g. Figs. 5, 
6 and 7, which display some of  the new data 
and permit comparison with the old. 

Finally, Section 5 contains two re-presentations 
of  the new solutions which will serve as the 
auxiliary functions in general approximate 
methods to be presented in later papers in the 
series. 

2. THE MATHEMATICS OF THE 
SIMILAR SOLUTIONS 

2.1. The laminar-boundary-layer equation and 
boundary conditions 

We restrict consideration to two-dimensional* 
laminar boundary layers with uniform material 
properties. Using a rectangular co-ordinate 
system, the basic equation (1) now reduces to: 

~p ~p ~2p 
pu ~ + pv ~y - r ~y,  = o (5) 

where p = fluid density, assumed uniform 
(lbm/ft3); 

x = distance along interface in flow 
direction (ft); 

y = distance from interface into fluid (ft); 
u = velocity component in x-direction 

fit/h); 
v = velocity component in y-direction 

(if/h). 

The "similar" velocity distributions. We have 
already established, in Paper 1, that a condition 
for the existence of "similar" velocity profiles 
is that the main-stream velocity u obeys the 
relation: 

dug 
d--ff : C uGn (6) 

where C and n are constants. 
Under these conditions, the same reference 

implies that: 

u = uGf'  (7) 

* The resulting solutions are relevant to axi-symmetrical 
flows also, by reason of the existence of the Mangler 
transformation, as explained in Paper 1 of the present 
series. 

and 

d u o ' p / * ,  ~ ,  (/3 _ ÷ f }  

w h e r e f '  ~ df/d '7; 

(8) 

f is the dimensionless stream function 
which depends only on '7; 

'7 is the dimensionless distance co- 
ordinate, namely y{(duG/dx)/v/3)l/2; 

v is the kinematic viscosity of the fluid 
(ft2/h); and 

t3 is a constant related to n by: 

fl---- 1/(1 --n/2) .  (9) 

Inserting these relations in equation (5), there 
results 

dug ~P . f ,  [v dUG] ~/2 
UG dx " OUG ~fl -dx } 

~P 7 O2p 
{ '7f '  ( / 3 -  1 ) + f }  8y P 8Y ~ O. (10) 

Meanwhile, the definitions imply: 

rh" = pvs (11) 

while, because '7 equals zero at the interface 
(S-state, equation (8)) implies: 

dUG]l/~j ° 
V S = - -  v f l ~ ]  ~- (12) 

where f0 is the value of f a t  '7 = 0. 
These two relations enable the boundary 

condition (4) to be rewritten for a similar velocity 
layer as: 

duG~l/~fo 7 (8P/~y) s (13) 
- v / 3 - ~ }  ~ - p ( e s - e ~ ) "  

Now, since 

we can write: 

fduG / 1 x/z 

t~ - /  J t~/~" 
(15) 
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Combining (15) with (13), there results: 

- - f o  = Y . (OP/07)s 1 
pv Ps -- PT ! 

1 (eP/eT)s [ (16) 
_ . 

J (r Ps -- PT 

where cr =_ pv/y. (17) 

Clearly ~ stands for the Prandtl number if 
Y represents the thermal conductivity divided 
by specific heat; it stands for the Schmidt 
number if y represents a diffusion coefficient 
multiplied by the mixture density. Which is 
appropriate depends of course on the nature of 
the conserved property represented by P [1]. 

Now it will be recalled from Paper 1 that, if 
the velocity profiles are to be similar, as has 
been postulated, fo has a constant value for a 
given boundary layer. We therefore deduce 
from equation (16) that, since ~ is also a constant 
for a given fluid, (OP/07)s must be proportional 
to Ps -- PT. 

Conditions for similarity o f  P-profiles. So far 
we have not required that the P-profiles in the 
boundary layer should be geometrically similar 
to each other at successive stations downstream. 
We now introduce this restriction by making the 
postulate: 

P - -  P G  = ( P T  - -  Ps) .  ¢ (7) (18) 

where 

¢(7) 
PT -- Ps 

stands for some function of 7, and 

may in general be a function of the 
stream velocity Ua. 

Equation (18) satisfies the requirement de- 
duced in the foregoing section from the boundary 
condition (16). It also satisfies the requirement, 
characteristic of all boundary layer flows, that 
the value of the conserved property in the 
main-stream, namely PG, is independent of 
downstream distance. 

Insertion of  (18) in the differential equation 
(10) leads to: 

f3f' ~buG d 1 ¢" 
~-T ~ f f s  du-G (PT -- Ps) - - f ¢ '  -- ~r = 0 (19) 

where ¢' stands for d~b/d7 and ¢"  for d~¢/dv 2. 

Equation (19) is an equation with only one 
independent variable provided that the term 

UG d 
PT -- Ps dug (Pr  -- Ps) 

is a constant. 
The condition for the validity of the similarity 

requirement (18) is thus: 

UG d 
PT - -  Ps dug (PT -- es) = const. = k (say). (20) 

The differential equation then becomes: 

~" -+- a f¢ '  -- k[3f' ¢"  = 0. (21) 

The boundary condition (16) meanwhile reduces 
to: 

--fo = (¢' )o/~  (22) 

suffix 0 again indicating evaluation at the inter- 
face, sometimes called the "wall", where 7 = 0. 

Further restriction of  the scope of  the inquiry. 
Very few exact solutions have been derived for 
values of k different from zero [4]. Moreover, 
they have all been obtained for the case B = 0 
(significance explained in [1] and below); they 
are thus of relatively minor importance in mass 
transfer studies. 

The experimental circumstances under which 
the properties of the fluid adjacent to the inter- 
face and of the transferred substance, Ps and 
PT, both vary so as to obey equation (20) will 
be very rare in practice. We have therefore 
restricted consideration to the case in which 
PT -- Ps is independent of downstream distance 
(i.e. of u~). Thus we take k = 0 in all further 
studies. 

Inspection of equation (18), evaluated for the 
interface, reveals that, since P c  is a constant, 
both Ps and PT must be constants. The physical 
interpretation of this varies according to the 
circumstances: if P is enthalpy, for example, we 
deduce that not only must the wall temperature 
remain uniform, but the heat transferred through 
the S control surface [1] per unit of mass 
transferred must also be uniform. 

Since Ps and PT are now to be considered as 
uniform, we can introduce the notation 
developed for this case in the paper just referred 
to. We then have: 
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and 

P - -  Ps ( P o - -  Ps ) 
b------ps_PT - - P s - - P T  ~ (23) 

PQ -- Ps 
B ---- b a - -  P s  - -  PT" ( 2 4 )  

The differential equation (21) therefore reduces 
to 

b" + g fb' = 0 (25) 

with boundary conditions: 

at ~ 7 = O : b = O , b ' = b ' o : - - ~ r f o  1 
(26) 

at ~7= ~ : b = B .  f 

The mathematical problem which we have to 
solve is thus specified by (25) and (26), whereinf  
is of course a function of '7, obtainable from the 
solutions summarized in Paper 2, while the 
prime indicates differentiation with respect to 7- 
We shall refer to equation (25) as the "similar" 
b-equation. 

2.2. Solving the "similar" b-equation 
The solution of equation (25) presents no 

difficulties; for, provided f i s  regarded as known, 
the equation is linear in b. The steps in the 
solving procedure, first devised by Pohlhausen 
[5] for the case B = 0, are as follows: 

(i) By use of the integrating factor exp {j'~rf d~}, 
equation (25) may be integrated; there results: 

b' = const, exp {-- f0 ~ crfd~7}. (27) 

Clearly the constant in (27) must equal bg, the 
value of the b-gradient at the wall. 

(ii) Making this insertion, and carrying out a 
further formal integration, we obtain 

t 7/ 
b = b o fo exp { -- f~ ~fd~} d~7 (28) 

in which the boundary condition: b = 0 at 
= 0 has already been inserted. 
After insertion of the boundary condition: 

b = B at ~ = oo, and further rearrangement, 
equation (28) yields expressions for the wall- 
gradient, namely: 

b E ---= B/y~ exp {-- J'~o ~fd~7} d~7 (29) 

and for the b-profile, namely: 

b j'~ exp {-- ~ ofd~7} d~] 
B f~o exp {-- j'~ ofd~} d~" (30) 

It is with the former quantity that we shall 
chiefly be concerned. 

Discussion. It will be noted that (29) and (30) 
can be evaluated by quadrature once f(v) and 
a have been specified. This is a simple computa- 
tional task. 

The relation: b' 0 = - - a  f0, has not yet been 
used; it is evidently not so much a boundary 
condition as a compatibility requirement between 
the b-profile and the f-profile from which it is 
deduced. The  consequences of the requirement 
will appear below (Sections 2.4 and 4.4). 

2.3. Relations between the solution of the equation 
and quantities of physical significance 

Before discussing the evaluation of (29), we 
shall examine its relation to quantities which are 
used in more general mass transfer problems. 
These are: the mass-transfer conductance, g, 
and certain boundary-layer thicknesses. In 
addition, the opportunity will be taken to make 
connexion with quantities which conventionally 
appear in discussions of the similar solutions. 

The mass-transfer conductance, g. Following 
Spalding [1] we define a conductance g by the 
"Ohm's Law" relation, 

rh" = g . B .  (31) 

The quantity g has the dimensions of lbm/ftZh 
and is equal to the mass velocity of the main- 
stream multiplied by the Stanton number. 

From comparison of equation (31) with 
equation (11), (12), and (26), there results: 

1 b E ( 3 2 )  
g/(lz P duG/dx)l/z - -  f 1 1 / 2 t 7  B" 

Comparison of equations (32) and (29) indicates 
how the conductance g can be deduced from 
the solution of the b-equation. 

The conduction-thickness, A 4. It is often 
convenient to use the concept of "boundary- 
layer thickness" in solving mass transfer prob- 
lems. As with the velocity boundary layer, 
many definitions are possible, and several are 
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convenient. The first of  these is A 4 (the notation 
is that of  Smith and Spalding [17]), defined by: 

A4 -- B/(Ob/~y)s. (33) 

Clearly A 4 is the distance at which a tangent to 
the b-profile at the interface intersects the line 
of  maximum-b (Fig. 1). 

~ ] n t e r f o c e  , 

i 

FIG. 1. Illustrating the relation of the "conduction 
thickness", d 4 to the variation orb normal to the wall. 

To relate A 4 to other physical quantities and 
to the quantities derived from solution of the 
equation, we merely have to invoke the defini- 
tion of ~ (see equation (14)). There results: 

A 4 {(duG/dx)/v} 1/2 =/31/2B/b', (34) 

Three further relations involving A 4 are worth 
establishing. The first is obtained simply by 
squaring equation (34); there results an expres- 
sion of a form which has proved to be useful 
in Paper 1, namely: 

~ x  - / 3  " (35) 

Since, for similar boundary layers, we also 
have 

dug 
- -  C UG" (6)  

dx 

it is possible to deduce from (35) that: 

u6 dA] _ 2(1 --/3) . (36) 
v dx 

The expression on the left-hand side of  
equation (36) is a measure of  the rate of  growth 
of the boundary-layer thickness; it will be 
found useful in approximate methods for 
predicting mass transfer rates. 

The third relation involving A 4 is that which 
links it to the conductance, g. The definitions 
are readily seen to imply: 

gA4/~ = 1. (37) 

This relation permits evaluation of g once A4 
has been deduced from a boundary-layer 
analysis. 

The convection-thickness, Ae. Another con- 
venient definition of a thickness of the boundary 
layer of  b is: 

A2 -~ Yo (U/UG) (1 --  b/B) dy. (38) 

This definition implies that the quantity pUGBA 2 
measures the convection flux along the boundary 
layer of  the property b, measured below a 
base-value which prevails in the main-stream. 
A 2 is thus the analogue of the momentum thick- 
ness of the velocity boundary layer; we shall 
call it the "convection-thickness". 

In relating A 2 to quantities appearing in the 
solution of the differential equation (25), we 
firstly introduce f '  and ~7 into (38), obtaining: 

A2 {(duG/dx)/v}l/2 =/31/2 ~ f ,  (1 - -  b/B) d~7. (39) 

We then note that equation (25) can be integrated 
once formally to giw',: 

[b']~o q- cr {[fb]no --  ~of'b d~/} = 0. (40) 

Taking infinity as the upper limit, where b = B 
and b' = 0, and noting that fo~ can be written 

'd as fo + ~o f ~, equation (40) becomes: 

b~ = cr B {fo -+- f~f ' (1  -- b/B)d~}. (41) 

Finally we may eliminate the quadrature expres- 
sion between equations (39) and (41) and replace 
~rfo by - -  b~. There results: 

A2{(duG/dx)/v}l/2 __/31/2(1 + B) b o (42) 
~r B 

which is the desired relation. 
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The final relation involving A s which we shall 
derive is that giving the ratio of boundary-layer 
thicknesses, A2/A 4. This is obtained from (42) and 
(34), and is: 

A2 (1 B) A, _~ (~)2.  (43) 

Relation to other quantities appearing in the 
literature. Solutions of the similar laminar- 
boundary-layer equations appearing in the 
literature are usually presented in terms of the 
distance x of the point in question from the start 
of the boundary layer. We here list, without 
comment, some relations which will enable 
quantities expressed in these terms to be trans- 
lated into the present terms, and vice versa: 

E u  = [ 3 / ( 2  - [3) 

: 1/(1 -- n) (44) 

where 

Eu ~ Euler number, i.e. the exponent in the 
relation between ua, and x, namely 

u~ oc x E". (45) 

NuIVRe  = A-4 \xuG,, -- (2 -- [3)a/2 B 

= [{(2 / [3)  - 1 } { ( A I / ~ )  (duG/dX)}]~/, 
A (XUG] 1/~ 
xt--;-i 

(46) 

= [ { ( 2 / [ 3 )  - l )  { ( A ~ / 0  (duoldx)}]+~/~ 
(47) 

where 

Nu _~ Nusselt number; 
Re _~ Reynolds number; and 
A without suffix stands for either/1~ or A 4. 

It should be noted that some of the expressions 
in (46) and (47) become indeterminate for [3 : 0, 
i.e. when UG is independent of distance. It then 
becomes preferable to replace 

{(2/[3) - 1} {(A*lv) (duG/dX)} 

by 

{(2 --/3)/2(1 -- [3)} {(uGly) (dA'/dx)}. 

2.4. Procedure for obtaining particular solutions 
It is clear that, whatever the form in which 

the solution is to be presented, the quadrature 
of (29) has to be evaluated. This equation there- 
fore represents the key step in obtaining the 
solution. We now indicate the order in which the 
necessary steps may be taken. 

We suppose that [3 and cr are given values and 
that it is desired to obtain values of the mass 
transfer conductance for various B values. The 
following procedure suffices: 

(i) From the similar solutions of the velocity 
equation, seek out the one-parameter family of 
f07) functions corresponding to the [3 in question. 
The parameter is f0. 

(ii) For the particular ~r in question, evaluate 
the quadrature of (29), thus obtaining b'o/B as a 
function offo. 

(iii) For each value off0, evaluate b' 0 from the 
boundary condition (26). 

(iv) Combining the results of steps (ii) and 
(iii), tabulate b~ and b'o/B for various B. Then 
use equation (32) or the appropriate one of the 
subsequent equations, for expressing g, A a, A z, 
etc., as functions of B. 

3. SURVEY OF EXISTING SOLUTIONS OF THE 
"SIMILAR" b-EQUATIONS 

3.1. Tabulation of solutions 
Evaluations of the quadrature appearing in 

(29) have been made by numerous authors. 
Most of these, starting with Pohlhausen [5], 
have been concerned with the particular case 
in which the mass transfer is negligible (i.e. 
fo = 0, B = 0). More recently however, solutions 
have been published which are valid for non- 
zero B although that quantity has admittedly 
not often been calculated explicitly. We have 
collected all the published solutions which we 
were able to find and present quantities derived 
from them in the following tables. 

The tabulated quantities are [3, ~, B, bE/B, 
(A~/v) (duG/dX) or (UG/V) (dA]/dx), and four 
quantities termed X, Y, Z, and W; the latter 
quantities will be discussed below (Section 5.2). 

Table 1. B = O, various a and [3. These data 
have been derived from the solutions published 
in the pioneering papers of Pohlhausen [5], and 
of Eckert [6]. They are valid for heat transfer 
in the absence of mass transfer, or for mass 
transfer with very small driving forces. The data 
of Pohlhausen hold for [3 = 0, i.e. for the flat 
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Table 1. Exact solutions o f  the b-equation: B = 0 

--0"14 

0'0 

0"2 

0'5 

1.0 

1"6 

0.7 
0'8 
1.0 
5'0 

10"0 

0-1 
0.5 
0-6 
0.7 
0.8 
0.9 
1.0 
1.1 
7.0 

10-0 
15-0 

0.7 
0'8 
1.0 
5.0 

10'0 

0-7 
0.8 
1-0 
5'0 

10'0 

0-7 
0-8 
1.0 
5.0 

10.0 

0.7 
0.8 
1-0 
5.0 

10'0 

bo 
B 

0.3698 
0.3865 
0-4160 
0-698 
0.871 

0'1953 
0.3664 
0.3915 
0.4139 
0'4340 
0.4526 
0.4696 
0.4856 
0.9135 
1.0298 
1-1796 

0.4444 
0.4670 
0.5068 
0.898 
1-141 

0'4705 
0.4951 
0.5390 
0.970 
1.240 

0-4959 
0.5225 
0.5704 
1 '043 
1.344 

0.5144 
0.5430 
0.5937 
1.098 
1.416 

~ du~ 
v dx 

--1-0238 
--0.9372 
-0"8090 
-0"2874 
-0'1845 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1.0127 
0.9171 
0.7787 
0.2480 
0.1536 

2'2587 
2-0398 
1.7211 
0-5314 
0'3252 

4.0664 
3.6629 
3.0736 
0'9193 
0.5536 

6.0467 
5.4265 
4.5393 
1"3271 
0"7980 

X 

- -  1"5807 
--1.5124 
--1.4052 
--0.8375 
--0.6711 

0"6552 
0.6235 
0-5745 
0.3242 
0.2552 

1-1455 
1.0886 
0-9999 
0'5556 
0'4346 

1.6360 
1'5527 
1.4223 
0.7778 
0.6036 

2'0450 
1.9373 
1.7718 
0"9581 
0.7429 

Y 

4'9727 
4"9778 
4.9902 
5"2820 
5.4369 

9.4561 
7.1590 
7.0416 
6"9555 
6'8925 
6.8401 
6.8024 
6.7650 
6.4681 
6-4508 
6.4372 

8'2179 
8.0933 
7.9154 
7.1142 
6.9363 

9.3523 
9.1729 
8.8866 
7.6235 
7.2984 

10-6129 
10-3693 
9-9627 
8.1475 
7.6158 

W 

--0-8682 
--0'8302 
-0.7704 
--0.4463 
--0.3525 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.2799 
0.2684 
0.2501 
0.1489 
0.1187 

0.4588 
0.4402 
0.4108 
0.2465 
0.1971 

0.6151 
0.5906 
0.5519 
0.3338 
0.2679 

L 
Z References 

0'82381) 
0"8234[ [ 
0.8224 Eckert 
0.7993 ~ [61 

0.78791J 

0-5974i) 
0-6866~ 
0-6923 
0"6966 i 
0.6998 1 Pohlhausen [51 
0.70241 ~with accuracy im- 
0.7044] proved by Merk [20] 
0.70631 ~ 
0.72241 
0.7233 
0.7241 

0.6409 
0-6458 
0-6530 
0-6888 
0.6976 

0"6007 
0-6066 
0"6163 
0.6654 
0.6800 

11'7331 
11.4001 
10'9023 
8'6177 
8'0357 

0.7312 
0.7027 
0.6572 
0'3997 
0.3210 

0.5639 
0.5705 
0"582( 
0.643~ 
0'6657: 

0.5363 
0-54411 
0.55641 
0.6258 
0.6481[ 

,Eckert [6] 

plate;  those of Eckert hold for non-zero values 

of  ft. 
Table 2. fl = 0, various a. The values con- 

tained in this table have mainly  been deduced 
f rom the paper by Mickley, Ross, Squyers and  
Stewart [7], which represents the most  extensive 
single source of exact solutions of the "similar"  

b-equations with non-zero B. Since fl = 0 for 
these solutions, the underlying f07) relations are 
those for the flat plate in a uni form stream; we 
therefore tabulate (uG/v) (ddi /dx)  rather than  
(z~]/v)(duG/dx), since the latter quant i ty  is 
zero throughout .  

Only for a = 1 have data other than  those of  
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Table 2 (continued) 

i.0 

1'1 

1.4 

2'0 

5'0 

B 

--0"71294 
--0"73671 
--0'75779 
--0"77654 
--0"79330 
--0'85512 
- -0"89361 
--0'91899 
--0.94904 
- -  0-96529 
--0-97495 
--0-99039 

17"713 
4"635 
1.688 
0 

--0"4971 
-- 0"7049 
--0"8089 
--0'9275 
--0"9693 

34.063 

b; 
-0 

1.09100 
1"15178 
1-21306 
1"27482 
1"33703 
1-65382 
1-97824 
2"3083 
2"9803 
3'6627 
4'3516 
7.1397 

0.04391 
0.1259 
0.2304 
0'4858 
0'7823 
1'1034 
1.4425 
2.5154 
4'0128 

0.02906 

u G dA~ 

v dx X 

1.68027 0.71294 
1-50762 0"73671 
1"35915 0'75779 
1.23064 0.77654 
1.11879 0.79330 
0.73123 0.85512 
0.51106 0.89361 
0'37535 0'91899 
0'22517 0.94904 
0.149085 0.96529 
0'105615 0.97495 
0.039235 0.99039 

1037.2 - 16"lO 
126"25 --4-214 
37'684 -- 1.534 
8'4751 0 
3.268 0.4519 
1.643 0.6408 
0.9612 0.7354 
0.3161 0.8432 
0-1242 0.8812 

2368"0 --24.33 

1.2602 
1.1307 
1.0194 
0-92298 
0"83909 
0-54842 
0-383295 
0-28152 
0'16888 
0.11181 

[ 0.079212 
0.029426 

977.0 
109.6 
31'39 

6.758 
4.873 
1.737 
0.7774 
0.1466 
0"03611 

4292'0 

W 

0.41674 
0'43539 
0-45240 
0-46796 
0-48223 
0"53829 
0' 57661 
0.60377 
0.63851 
0"65873 
0.67147 
0.69325 

-2 .917  
-- 1.200 
--0"5527 

0 
0.2391 
0.3663 
0-4422 
0.5441 
0.5920 

- 3'538 
6"956 0-1067 
2"145 0.2308 

116'86 0.01210 
14.300 0.07417 
3'579 0.1976 
0 0.5971 

--0'6264 1.1288 
--0.8177 1"7296 
--0"8957 2-3684 
--0'9670 4-3876 
--0.9872 7.1629 

3549.0 
296-35 

19'741 

0.9963 x 10 -4 
0-008948 
0.08955 

175"6 
37-56 

1"366 × 104 
363"50 

51.240 
5.6100 
1.5763 
0"6686 
0"3565 
0.10389 
0'03898 

2014.8 × l0 s 
2498'1 

249.41 

--4.969 
--1.532 

--58'43 
7.150 

--1.790 
0 
0"3132 
0.4082 
0.4478 
0.4835 
0'4936 

--0.7098 
--59-27 

--3.948 

228.8 
39.76 

8.490 × 104 
974.0 

90.5 
6.617 
1.543 
0"598 
0"3021 
0.0820 
0-02990 

5.954 x 10 ~ 
2.168 x 104 
2.430 x 10 a 

-1 .264  
-0.5299 

-5 .428  
- I . 4668  
- 0.5349 

0 
0.1528 
0.2135 
0.2422 
0.2726 
0.2832 

-419"7 
-2 .588  
-0.7201 

Z 

0.25170 
0.23340 
0.21690 
0.20200 
0-18848 
0.13680 
0.10298 
0.079833 
0.051432 
0'035532 
0.025877 
0.010092 

5.084 
2.408 
1"452 
0.7013 
0.3991 
0-2530 
0-1725 
0.07007 
0.03108 

7.649 
3.037 
1.632 

16-42 
4.708 
2-053 
0-6333 
0.2734 
0.1428 
0.08463 
0.02794 
0.011045 

314"8 
19.47 
5.674 

Mickley et aL been used; here the source is the 
paper by Emmons and Leigh [8]. Although those 
authors were primarily concerned with the 
velocity boundary layer, the differential equation 
for the latter is identical with equation (25) for 

= 1 and t3 = 0; their data, which are more 
numerous than those of Mickley et al. for a = 1, 
are therefore usable for the present purpose. 

Table 3. a ~-0.7, various/3. These data have 
been taken from the following papers: Brown 
and Donoughe [9], Donoughe and Livingood 
[10], Livingood and Donoughe [11], Howe and 
Mersman [12]. 

In this table (A~/v) (duG/dX) has been tabulated 
in place of (uG/v) (dA~/dx). Of course, the one 
can easily be derived from the latter by way of  
equations (35) and (36). 

3.2. Graphical representation 
Most of  the data contained in Tables 1, 2 and 

3 are represented graphically in Figs. 2 and 3. 

In each case the ordinate represents the quantity 
o -1/~ b'o/B, which may be interpreted, in accord- 
ance with the foregoing equations, either as 

0 "-1/3 (2 -- fl)l/2Nu/~/Re 

or as 

a2/sfll/2/ (l~ pduG/dx) a/2. 

The cr -1/3 is introduced into the ordinate quantity 
in order to bring the curves closer together; the 
reason that it does so will be apparent from the 
discussion which is to follow in Section 4.2. 
The quantity plotted in the abscissa is the mass 
transfer driving force B. Logarithmic paper is 
used in a manner permitting clear plotting. 

Figure 2 is valid for /3 = 0 (the flat plate; 
uniform fluid stream velocity UG) and for 
various values of a. Fig. 3 is valid for a fixed 
value of ~, namely 0.7 which is a common value 
for gases, and shows the influence of /3. The 
latter quantity, it will be recalled, measures the 
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velocity gradient in the main-stream: /3 = ½ 
corresponds to the stagnation point in axi- 
symmetrical flow;* while 13 = 1 corresponds to 
the stagnation point in a two-dimensional 
flow. The line marked cr = 0.7 on Fig. 2 is of 
course identical with that marked /3 = 0 on 
Fig. 3. 

It will be noted that relatively few exact 
solutions are available from which Fig. 3 can 
be plotted; in particular, no solutions are 
available for negative values of the driving force 
B for/3 values other than zero. 

3.3. Discussion 
Figures 2 and 3 contain almost all the pub- 

lished solutions of the b-equation, for uniform 
properties, in the Western literature, with the 

* The appropriate transformation must be made 
before the/~ = 0.5 curve can actually be used to evaluate 
g in axi-symmetrical stagnation-point flow. See Paper 1. 

exception of those which lie on the lines B ----- 0. 
When it is borne in mind that, for complete 
coverage, we need a graph such as that of Fig. 2 
for every value of/3 (or alternatively one like 
Fig. 3 for every value of ~), it is clear that much 
remains to be done. Even the figures which could 
be drawn are seriously incomplete: thus it 
appears that no one has obtained solutions for 
negative B (condensation, suction, absorption, 
and the like) for any case but that of zero velocity 
gradient. 

Despite the paucity of the data, certain trends 
are quite clear. For example: 

(i) The ordinate quantity fails as B increases, 
and rises as B decreases. Their relation 
depends on/3 and on (r. 

(ii) The ordinate quantity tends to infinity as 
B tends to -- 1. 

(iii) The ordinate quantity increases with 
increasing/3. 

Table 3. Exact solutions of the b-equation: o = 0"7 

--0.1988 
--0.19 
--0"18 
--0.16 
--0.14 
--0'10 

0 
0.6667 
1.0 

--0-0872 
0 
0.6667 
1.0 

--0.007198 
0 
0.05 
0"15 
0"5 
1-0 

0.5 
0'5 
0.5 

B 

1"6300 
1"0536 
1.0120 
1.1929 

13-84 
6"783 
4.171 
3"565 
3"772 
4.804 

0 

0"96426 
3"5510 

b~ 

0"2955 
0"3278 
0"3411 
0"3579 
0"3698 
0'3873 
0'4139 
0'4806 
0"4958 

0-1487 
0.2347 
0-2995 
0.2934 

0.0356 
0.0730 
0.1216 
0.1489 
0.1607 
0.1457 

0'47049 
0"29637 
0.16095 

41 dug 
v dx 

-2"276 
-- 1'768 
-- 1'547 
-- 1"249 
- -  1'024 
-0"6665 

0 
2'886 
4-017 

-4-060 
0 
7-431 

11"62 

--11'42 
0 
6"441 

11'77 
25'80 
47"11 

2"259 
5'692 

19"301 

X 

O9 

--6"75 
--4"115 
--2"347 
--1"581 
--0'808 

0 
1'355 
1-636 

oo 

--1.506 
1.320 
1-813 

GO 

--9"671 
--1"934 
--0"182 

1"332 
2.206 

1'1455 
1.0202 
0.84342 

Y 

0 
2-565 
3.400 
4.370 
4-975 
5.762 
6"963 
9"830 

10"620 

0 
18'84 
31 '48 
40.6 

0 
134"7 
113"6 
113"5 
156'0 
256.9 

9"354 
28'381 

132"23 

W 

- - O 9  

--5-175 
--2"632 
--1"377 
--0"8681 
--0'4125 

0 
0"5217 
0-6150 

- - O 9  

--0"6080 
0'4083 
0.5178 

- - O 9  

--2.843 
--0-5054 
--0"04366 

0.2856 
0.4068 

0'45871' 
0'32872 
0-19165 

Z 

oO 

1"149 
0"9964 
0"8784 
0.8240 
0"7651 
0'6969 
0"5861 
0'5638 

o0 

1.244 
0"9349 
0-9399 

References 

Brown and 
Donoughe [9] 

Donoughe and 
• Livingood [10] 
Livingood and 

Donoughe [11] 

O(3 

3'425 
2"0263 
1 '6828 
1.5332 
1.6030 

0.60067 3 .  
0.94935 I~ ~ ° w e  
1.5512 .J 

and  
Mersman [121 
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fo 

T 

O'C 

~ ' ~  0 6 0  

FI~. 2. Exact solutions to the b-equation for the flat plate (~ = 0) from Tables 1 and 2. Parts of some 
curves have been omitted to retain clarity. 

(iv) The ordinate quantity falls as g decreases 
when B is positive, but rises slightly when 
B is negative. 

We now consider ways in which the available 
data can be augmented. 

4. NEW SOLUTIONS OF THE "SIMILAR" 
b-EQUATION 

4.1. Preliminary remarks 
It is clear from the foregoing discussion, 

together with inspection of equation (29), that 
the problem of the "similar" b-equation cannot 
be regarded as completely solved until (bJB) 
has been tabulated as a function of the three 
parameters: B, ~ and or, over a sufficiently wide 
range of each of the variables for the tables to 
be completed by asymptotic formula. Although 
only quadratures are involved, the task is a 
formidable one. We have not attempted it. 

Instead it has been our purpose to examine 

whether the solutions cannot be reduced to a 
two-parameter family, at least approximately; 
for such an approximation would reduce the 
computational task by one order of magnitude. 
The line of  thought which we have pursued is 
that pioneered by Lighthill [13], and carried 
further by Spalding [14]; both these workers 
having been concerned with laminar boundary 
layers in the absence of mass transfer (case of 

= 0 ) .  

We do not seek a two-parameter family of 
solutions merely so as to reduce labour: it is 
rather that we are here concerned with the 
similar solutions as means to an end, i.e. as 
the key to the prediction of mass transfer rates 
in more general, non-similar boundary layers. 
In this work a three-parameter family would be 
an embarrassment: there is already sufficient 
difficulty in handling one with two parameters, 
as will be seen in a later paper of the series. 
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FIG. 3. Exact solutions to the b-equation for o 

' ~  - --1'6 

I 

-0-0872~L 0.2608 I 

B 

= 0.7 and various values of/3 from Table 3. 

Characteristic features of the solutions to be 
presented. In 1950, LighthiU showed how the 
earlier solution of Leveque [15] could be 
generalized so as to enable heat transfer rates 
(or mass transfer rates with B close to zero) 
to be calculated from knowledge of  the velocity 
gradient in the y-direction close to the wall. 
The method is exact, provided that the b- 
boundary layer is much thinner than the velocity 
layer; this is the case with large ~r. 

Spalding [14] showed that the error in the 
Lighthill method can be greatly reduced if 
account is taken of the extent to which the 
b-layer reaches into the region where the velocity 
profile is appreciably curved. Thus, whereas 
Lighthill's analysis led to a single number, 
Spalding's led to a function of a single variable 
[ Y (X) or Z (W) for B = 0 in the notation of 
Section 5.2]. 

The work now to be reported makes the next 
step: it includes the effect of non-zero B values. 
As a consequence we shall be concerned to 
examine the effect on the conductance of two 
parameters: "the curvature parameter" (X or 

W) which Spalding [14] found to be already of 
importance for zero values of B; and B itself. 

Specifically, we shall be concerned with 
distributions of the stream function which can 
be expressed in the following form: 

f : f o  -}- ½f~' ~72 -q- ~f~" ~3. (48) 

The three analyses which have been mentioned 
can now be characterized as follows: Lighthill 
considered the case in which f0 and f~" were 
zero; Spalding considered the case in which only 
fo was zero; in the present paper, all three 
coefficients of the expansion may be finite. Of 
course f0' is always zero, since the fluid can be 
regarded as having zero u at the wall. 

It should be understood that the solutions 
which follow are exact for the particular 
f-functions which are examined: the approxi- 
mation only enters when the more complex 
f-functions of real velocity boundary layers are 
assumed to belong to this family. 

4.2. Mathematical discussion 
Transformation of the integration variable. On 
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insertion of our particular expression for f ,  
equation (48), in the integral which has to be 
evaluated, equation (29), we obtain the following 
relation: 

I ~ t /  3 1 z ' t t t  4\ '1. .1 B/b~ = ~ exp {-- (,(f0~7 + ~./0 '7 + .~xJo ~ )~u,7. 
(49) 

After introduction of a new variable of 
integration, ~o, defined by: 

~o --  (crfo'/6)I/3 ~ (50) 

equation (49) reduces to: 

( B/b'o) (~f~' /6) 1/3 
.Fg exp {-- J(o -- o93 -- K(o4)dw _---- l(J, K) (51) 

(say) 
where 

J -- afo(61(rfo') 1/3 (52) 

~rf~"( 6 ~ 413 
K ------ 24- ~f~f~'] " (53) 

This change of variable has the effect of 
leaving only two parameters, J and K, in the 
expression which has to be computed, namely 
the integral on the right-hand side of equation 
(51). Calling this integral / ,  it will now be our 
purpose to establish the function I(J, K); with 
this known, equations (51), (52) and (53) will 
enable us to calculate (b'o/B) for every set of 
values offo,  f~',f~", and ~. 

Some special cases. Where J and K are both 
equal to zero, the integral reduces to 

.f~ exp (--¢o3)d¢o; 

this has the value 0.89298, as was shown by 
Leveque [15] and Lighthill [13]. In this case, 
equation (51) shows that b'o/B is equal to 
0.616 ((,f~,)1/3. When J is positive and much 
larger than both unity and K, the integral 
reduces to 

J'o exp (-- Jw)dw, 

which has the value l/J; this arises when B tends 
to -- 1. 

The determination o f  J, K and L Equation (52) 
shows that J can be ascribed a particular number 
whenever fo, .f~' and ~ are known. Now the 

relation between f0 and f~' is known, for fixed 
values of the pressure-gradient parameter /3, 
from solutions of the velocity equation (Papers 1 
and 2). So J is fixed when ~r,/3 and, say, f0 are 
determined. 

K may be evaluated in terms of velocity- 
boundary-layer parameters in a similar way. 
Here it is convenient to replacefg" by -- (f0f~' +/3) ; 
the equivalence of these two quantities may be 
demonstrated directly by evaluation at ~ = 0 of 
the differential equation of the similar velocity 
boundary layer, namely (Paper 1): 

f " '  + i f "  + fl(l _ f , 2 )  = 0. (54) 

Then equation (53) may be re-written; since 
f '  = 0 at,7 ----0: 

(co,' {6 ],/3 
K : - - o "  JOJo +/3) ~ ,  . (55) 

24 ! 

Since/ is  a function o f d a n d  K, it now follows 
that it too can be evaluated if f0, .1o" and ~ are 
prescribed. 

4.3. Computations and results 
A convergence difficulty. The quadrature of 

equation (51) may be evaluated numerically in a 
straightforward numerical manner provided 
that the quantity K is positive. When K is 
negative however, the integral ceases to be 
convergent. This mathematical fact may be 
expressed in physical terms as follows: 

We are considering mass transfer into a 
boundary layer with a parabolic velocity profile. 
When the profile is concave upwards, as in 
curve (a) of Fig. 4, no difficulty arises; when the 
profile is concave downwards however, as in 
curve (b), the velocity must actually become 
negative at a certain distance from the boundary 
layer. The latter behaviour is physically un- 
realistic and is the cause of the non-convergence 
of the integral. To escape this difficulty, we have 
therefore modified the specification of the 
f-function for negative K, by requiring that the 
velocity profile (.(') should remain quadratic up 
to the point of maximum velocity; thereafter 
the velocity is taken as independent of distance 
from the wall. This is shown by curve (c) in 
Fig. 4. 

Expressing this modification symbolically, we 
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U6 

5 ?iiiiiii .................. 

FIc. 4. Quadratic velocity profiles. 

may write the new form of equation (51), valid 
for negative K as: 

The expression on the right-hand side of (56) is 
convergent for all negative values of K. 

Procedure for evaluation. The integral in 
equation (51) and the first integral in (56) were 
evaluated numerically, using Simpson's Rule. 
Generally an o J-interval of 0.1 was used, although 
a smaller interval was necessary when both J and 
K were large and positive. The resulting values 
of the integrals are believed to be correct to the 
fourth significant figure. 

The second integral expression in (56) is 
expressible in closed form as: 

2rrK~ l/~ f 
( - - ~ - ~  \ exp (76~KZ 

q- 12K erfc 4~/6(-- K) "/' 

This quantity was evaluated by reference to 
standard mathematical tables. 

Results. The tabulated values of I are con- 
tained in Table 4. This table is divided into four 
parts: (a) J negative and K positive, (b) J 
positive and K positive, (c) J positive and K nega- 
tive, (d) J and K both negative. Thus equation 
(51) was used for Tables 4(a) and 4(b); equation 
(56) was used for Tables 4(c) and 4(d). 

4.4. Deduction of new approximate solutions for 
real flows 

"Real" and "artificial'flows. Table 4, together 
with equations such as (26) and (51), enable 
exact values of b E, B, etc. to be predicted for 
prescribed values of f0, f'0', /3 and ~r, provided 
that the f profile has a form leading to (51) or 
(56). 

Let us distinguish here between flows having 
the f-profiles just described and those obeying 
the "similar" laminar boundary-layer equations 
by calling the former "artificial" and the latter 
"real". Then Table 4 relates to artificial flows, 
while Tables 1, 2 and 3, containing the solutions 
obtained by other authors, relate to real flows. 

The exact solutions for the artificial flow may 
serve as approximate solutions for the real flows 
if we assume that the only information about the 
velocity profile which influences b' o is contained 
in the specifications of the three terms :fo, f'0' and 

t t t  f0 • We shall now make use of this assumption 
to derive new solutions for real flows with 
/ 3 = 0  (the flat plate) and / 3 = 1  (the two- 
dimensional stagnation point). Since some 
exact solutions are available for these flows, 
(Tables 2 and 3), comparison with these will 
enable the accuracy of the approximation pro- 
cedure to be discerned. Some solutions for other 
/3-values are also derived. 

Procedure. The solutions will be expressed in 
the same terms as those in Figs. 2 and 3, i.e. 
as plots of ~r -x/3 bo/B vs. B for various values of 
cr (see Section 3.2). Their deduction from the 
data in Table 3 proceeds as follows: 

(i) For the/3 in question, choose a value of 
f0. 

(ii) Obtain the corresponding value of f'0' 
from the exact solutions of the velocity 
equation tabulated in Paper 2. 
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(iii) Choose a value of ~r. 
(iv) Hence evaluate J from equation (52) and 

K from equation (53). 
(v) Use the J and K values, in conjunction 

with Table 3, to give a value of L 
(vi) Hence obtain b'o/B from equation (51), 

and so B from equation (26). 
(vii) Finally calculate cr-1/Zb ' lB. 
Results. The approximate solutions obtained 

by this means are presented as full curves in 
Figs. 5 and 6, valid respectively for/3 = 0 and 
/3 = 1 and for various values of ~r, and in Fig. 7, 
valid for cr = 0"7 and various values of/3. The 

points marked on the graph represent exact 
solutions taken from Tables 1, 2 and 3. The 
cr or/3 values for the curves and the points are 
indicated on the diagram. Only values of o of 
0.7 and above are considered. 

The curves marked ~ : oo, though derived by 
the above procedure, may be regarded as exact. 
They correspond to the case in which the 
b-boundary layer is very much thinner than the 
velocity boundary layer, so that the velocily 
profile may be regarded as linear throughout the 
important region. This situation corresponds to 
a K-value of zero. 

Table 4(a). Values Jbr 1 tbr various J and K obtained from evaluation of equation (5 I) 

--3"4 

- 3 " 2  

- -3 '0  

--2"8 

--2"6 

--2"4 

--2'2 

--2 '0  

- 1 ' 8  

--1"6 

- 1"4 

--1"2 

1 " 0  

0"8 

--0"6 

---0"4 

- 0 ' 2  

0'0 

K 3"0 

2-6644 

2.4019 

2.1702 

1.9653 

1.7838 

1.6228 

1-4796 

1.3521 

1.2384 

1.1368 

I'0459 

0'9643 

0-8910 

0.8251 

0.7656 

0.7119 

0-6633 

0.6193 

0.8 2.5 2.0 I 1.5 1.0 

2-9296 3'2867 t 3.7933 
¢ 

2"6276 2-9293 !3'3591 
1 

2"3625 2-6177 2-9778 3.5377 

2"1294 2'3455 12-6477 i 3.1117 
I 

1.9240 2-1073 2.3612 12.7463 

1-7426 1"8983 2.1120 12.4321 

1.5822 1-7146 1.8947 , 2.1613 

1-4401 ~ 1.5528 1.7048 i 1.9272 
I i 

1-3140 i 1"4100 1.6052 i 1.7243 

1-2017 1.2837 1"3925 i l .5481 

I 
1.1017 i 1.1711 1.2641 ii 1"3944 

1.0124 1.0724 1.1508 1.2602 

0-9325 0.9840 11.0506 1.1427 I 
0.8609 0-9050 '0.9618 1.0394 

0.7966 0.8346 0.8829 i0-9485 
I 
i 

0"7387 0.7714 0.8127 ,! 0.8682 
L ~ 

0.6866 0.7147 0.7501 /0.7978 
f 

i I 

0'6395 0.6637 0.6940 10.7340 

2.5 2-0 1.5 1 1.0 
i 

3.8656 

3"3803 

2.9668 

2-6135 

2.3107 

2.0506 

1.8264 

1.6326 

1.4646 

1-3186 

1.1913 

1.0800 

0.9825 

0-8967 

0.8210 

0'7541 

i 

0"6 0.4 

I 

4.3126 14.9089 

3.7325 4'2218 

3.2547 3.6471 

2.8472 3-1647 
i 

2-5016 '2 '7576 

2.2069 i 2"4148 

2"0879 2"1235 

1"7380 1'8754 

1'5515 1"6636 

1"3903 1'4820 

1"2506 1-3258 

1"1293 1"1910 

1"0233 1"0742 
J 

0.9307 0.9727 

0.8494 0.8842 

0'7778 i0"8066 

0.2 

4.2370 

3.6333 

3.1263 

2.7130 

2.3622 

2.0672 

1.8173 

1.6066 

1.4267 

1-2729 

1.1408 

1.0271 

0.9286 

0.8431 

0.0 K 

5.2735 
4.8348 
4.4378 
4.0813 
3.7581 
3-4669 
3.2025 
2.9632 
2-7460 
2-5488 
2.3691 
2.2056 
2.0562 
1.9168 
1.7953 
1.6812 
1.5766 
1-4806 
1.3923 
1.3094 
1.2364 

1.1037 

0.9903 

0"8930 

J K 3"0 0"8 0.6 I 0.4 0.2 0'0 K J 

--3"4 

--3"2 

--3-0 

--2-8 

- -2 '6  
--2 '5 
--2-4 
--2"3 
--2"2 
--2-1 
--2-0 
- -1 '9  
- 1 8  
- 1-7 
-- 1.6 
--1-5 
- 1-4 
- - 1 3  
- -  1"2 
--]-1 
- 1-0 
- 0 " 9  
- 0 - 8  
-0 -7  

0"6 
--0-5 
--0-4 
- - 0 3  

0-2 
0-1 
0"0 
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Table 4(d). Values for I for various J and K obtained from evaluation of equation (56) 

d K 0'0 

--2.6 5.2735 
--2-5 4.8348 
--2.4 4.4378 
--2.3 4.1292 
- 2 . 2  3.7581 
- 2.1 3.4669 
- 2 . 0  3-2025 
--1.9 2-9632 
-- 1.8 2.7460 
- -  1.7 2.5488 
- 1.6 2.3691 
- -  1.5 2-2056 
- - 1 . 4  2.0562 
--1.3 1.9168 
-- 1.2 1.7953 
--1-1 1.6812 
--1.0 1.5766 [ 
--0.9 1.4806 
--0-8 1.3923 
--0-7 1.3094 
--0.6 1.2364 
--0.5 
--0.4 1-1037' 
- 0 . 3  
- 0 . 2  0.9903 
- 0 . 1  
--0.0 0.8930 

J K 0"0 

--0'1 

6"2249 

5-1558 

4.3025 

3.6166 

3.0625 

2.6120 1 

2'2435 

1.9403 

1-6893 

1.48(M 

1.3053 

1"1579 

1"0333 

0.9270 

--0"1 

--0-2 

8'0749 

6.5003 

5.2850 

4.3392 

3-5969 

3.0095 

2.5409 

2.1640 

1.8586 

1.6091 

1.4033 

1"2337 

1'0924 

0.9730 

--0 '2 

--0"3 

1"8329 

9"1101 

6.9936 

5.6319 

4.5185 

3'6720 

3.0211 

2'5147 

2.1168 

1-8006 

1.5469 

1.3414 

1'1739 

1.0343 

--0"3 

--0.4 

7.5958 

5"8619 

4-6016 

3'6715 

3.0191 

2.4457 

2.0382 

1.7203 

1"4690 

1-2681 

1.1057 

--0.4 

- 0 . 5  - 0 . 6  

7.6755 i 

5'8050 , 7.3142 

4.4821 5-4580 

3'5288 4'1616 

2.8294 I 3.2603 
I 

2.3076 i 2.6012 

1.9118 i 2.1150 
I 

1"6068 i 1.7497 

1"3685 I 1.4704 

1.1796 ! 1-2533 i 

- 0 . 5  - 0 . 6  

--0.8 

5"7428 

4.2599 

3.2514 

2"5470 

2.0426 

1.6726 

1.3953 

--0.8 

- -  1 " 0  

5.4470 

3"9786 

3.0051 

2.3389 

1"8690 

1.5287 

- -  1 . 0  

--2"0 

5.7143 
4.6663 
3.8095 
3.2560 
2.7754 
2.3943 
2.0880 

--2.0 

--3.0 [ - -4 '0  

7.0791 9.9999 
5.5295 7.3743 
4.4200 5'6176 
3-6071 4.4050 
2.9984 3'5435 
2-5343 2.9152 

--3 '0  --4"0 

- -5 '0  K I d 

--2.6 

--2.4 

--2-2 

--2.0 

--1"8 

--1.6 

--1 '4  

--1-2 

- -  1 . 0  

- - 0 " 8  

--0.6 
--0.5 
--0.4 

6-8716 --O.3 
5.1899 --0.2 
4.0508 - 0 . 1  
3.2527 0-0 

--5.0 K J 

m 

O ' l l  i 

'1 
"1 
,I 

1 

1• I I I 

II 

8 

F I G .  5. 0 "-1/3 (b~/B) vs .  B f o r / 3  = 0 a n d  v a r i o u s  cr d e d u c e d  f r o m  T a b l e  4.  P o i n t s  i n d i c a t e  e x a c t  s o l u t i o n s  f r o m  
T a b l e s  1 a n d  2 ( ©  e = 0 . 7 ;  [ ]  e = 1 .0 ;  & a = 2 .0) .  C o m p a r e  w i t h  F i g .  2.  
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Discussion. Comparison of the points with 
the corresponding curves in Figs. 5 and 6 shows 
that the points lie on or close to the curves for 
large values of  ~ and moderate values of B, but 
tend to lie above them for the smaller values of or, 
particularly as B tends to -- 1. However, the 
deviations are never large, not exceeding 10 per 
cent if B does not fall below -- 0-9, and being 
within 5 per cent over most of the range. Fig. 7 
reveals that, for cr =0"7 ,  the discrepancy 
increases slightly as/3 increases. 

Since very low values of B are rare in practice 
(the authors have only encountered values 
smaller than -- 0.9 in studies of the burning of 
steel in oxygen jets), the approximate values of 
the ordinate quantity may be regarded as quite 
acceptable for most purposes. 

Comparison of Figs. 2 and 3, on the one hand, 
with Figs. 5, 6 and 7 on the other, shows that a 
great deal of previously uncharted territory has 
been covered. Moreover, corresponding charts 
can be derived from the data in Table 3 for any 
other value of/3 or a. It is clear that the neglect 
of higher terms than the second in the expansion 
of f '  permits a large amount of (approximate) 
information to be obtained from quite a modest 
amount of computation. 

The reason for the divergence between the 
approximate and the exact solutions for real 
flows is not hard to see. Our basic assumption 
requires that the b-boundary layer should be 
much thinner than the velocity boundary layer 
(d 4 ,~ 34) ; this is valid for large or, but not 
for small g. Moreover the manner in which we 
have "horizontalized" the velocity profile (Fig. 
4a) causes the assumed profile to differ appreci- 
ably from the real one when mass is being 
transferred out of the fluid at a high rate 
(B-+ -- 1). It is possible that a different escape 
may be found from the convergence difficulty 
described in Section 4.3 that will involve less 
serious inaccuracy in this region. 

One interesting feature of the solutions is 
that there is no tendency for the influence of 
B on g to disappear as g becomes large; instead 
the curves take up an asymptotic shape which is 
independent of both/3 and or. This means that 
even for diffusion in liquids, the mass transfer 
conductance is appreciably affected by B. The 
effect can be fairly well represented by the 

formula: 

g 
g ,  = (l + B) - 0 '  /157) 

where g* is the value of g valid for B = 0 for 
the ~ and /3 values which are in question. 
This formula is more exact than the logarithmic 
one used in the older literature (e.g. [16]) viz. 

g In (1 + B) 
g* B (58) 

5. FORMULATION OF THE "SIMILAR" 
SOLUTIONS AS AUXILIARY FUNCTIONS 

FOR MORE GENERAL METH O D S  

We have mentioned above that the "similar" 
solutions of the b-equation are chiefly of interest 
because they provide the auxiliary functions 
which are needed in solving "non-similar" 
problems; they act as bait enabling us to catch 
larger and more interesting fish. 

The general methods for solving mass transfer 
problems will be described in later papers of 
the present series. In the present section, we 
merely re-arrange the solutions already presented 
in the form which the general methods require. 

It will appear that the general methods fall 
into two classes (they are the classes designated 
I and II by Smith and Spalding [17]). Corres- 
pondingly the data from the similar solutions 
are required in two different forms. Section 5.1 
provides data suitable for the Class I method of 
solving general mass transfer problems; section 
5.2 provides data suitable for the Class II 
method. 

5.1. First re-presentation of the similar-solution 
data 

Although we do not intend to explain the 
Class I method at this point, it may be helpful 
to remark that it has much in common with that 
presented in Paper 1. There, it may be 
remembered, the relations between quantities 
such as (uGlY) (d3~/dx) and (3~/v) (duo/dx) 
proved to be important where 3 represented "a"  
thickness of the velocity boundary layer; it 
should therefore occasion no surprise that we 
here inquire into the relations between (uo/v) 
(dA,Z/dx) and (A~/v) (duG/dx) which hold for the 
similar solutions. 
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We have seen, in Sections 2-3, how to relate 
these quantities to those obtained directly from 
the solution of the fundamental differential 
equation (25). Reflection concerning the number 
of independent parameters thereupon reveals 
that we may express the links between these 
quantities in the form: 

v dx - - F  d u '  B, o (59) 

where F ( . . . )  is a function the form of which is 
dictated by the similar solutions. 

Figure 8 expresses the relation appearing in 
(59) in the form of a graph with B as the para- 
meter; the graph holds for the (r-value of 0-7, 
which is typical of gaseous systems. This value 
has been chosen partly because of its practical 
importance and partly because it is the only 
~-value for which any considerable number of 
exact solutions are available. However the 

" o  - o  
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FIG. 8(a). o ='s Uo C~4e ~ / a  .4=..4 d u g  
v d x  vs. - -  f o r o =  0.7 --  1 < B  < 0 .  

v d x  
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ordinate and abscissa have been multiplied to 
a S/a, thus rendering the curves relatively in- 
sensitive to e. Fig. 8 is presented in two 
parts: Fig. 8(a) exhibits negative values of B; 
Fig. 8(b) exhibits positive values of B. The 
curves have been derived from Table 4 by an 
obvious extension of the procedure described in 
Section 4.4, and then adjusted to pass through 
the points representing exact solutions extracted 
from Tables 1, 2 and 3. The curves thus represent 

the best estimates which we can make at the 
present time of the exact relation between the 
quantities in question. Were a greater number 
of exact solutions of the similar boundary-layer 
equations available, for real flows, we should not 
have had to make use of Table 4 at all. 

Discussion. Without anticipating the later 
publication which is to deal comprehensively 
with the Class I method, only a few remarks 
can be made about the form of Fig. 8. The first 
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is that it has roughly the same shape as one 
appearing in Paper 1 of the present series; 
there 32 took the place occupied by A 4 in Fig. 8, 
and the group vs32/v replaced B. 

Secondly it should be mentioned that the 
line for B = 0 has already appeared in a publica- 
tion by Smith and Spalding [17] dealing with 
heat transfer in laminar boundary layers; 
corresponding lines for other values of a can 
be found in a report by Smith and Shah [18]. 
Finally, we remark that an early and rough 
version of Fig. 8, for positive values of B only, 
has been published by Spalding and Smith [19]. 

Of course it is possible to plot many graphs 
of the type shown in Fig. 8 by the use of Table 
4 and of the exact solutions of the velocity 
equation; that for a = 0-7 is merely an example. 

5.2. Second re-presentation of the similar- 
solution data 

The Class II procedure which is to be des- 
cribed in a later paper in the series is an extension 
to finite mass transfer of that of Spalding [14]. 
The former publication was valid for heat 
transfer only (or mass transfer with B ~ 0); 
nevertheless we shall here represent the similar- 
solution data in the same co-ordinate system as 
was introduced there. Without proof or present 
explanation, we state that this implies the plotting 
of the quantity Y versus the quantity X for 
various values of B, and also the plotting of the 
quantity Z versus the quantity W for various 
values of B. 

Definitions and connecting relations. The 
quantities X, Y, Z and W are related to other 
quantities already encountered by the following 
relations. In each case, that designated by (a) can 
be regarded as the definition, that designated 
(b) expresses the quantity in terms of quantities 
appearing in the similar solutions, (c) expresses 
it in terms of the quantities L J and K, while 
(d) relates it to quantities appearing in the 
conventional heat transfer literature. 

The relations are: 

A434 dug vsA4 
X = (60a) 

v dx v 
tit 

- - f o  B 
f ; '  b '  (60b) 

= -- 4IK (60c) 

Eu (vsx/v)/~/Re 
(Nu/~/Re) (csx/Re/2) Nu/~/Re (60d) 

p_ ( d y =  -- _ ~4_ ' /2  /1] (61a) 

3 ~r 
= ) afo (B/b'.) 3 (61b) 

= 913 (61c) 

3 (1 -k Eu) (csx/Re/2) 
=: ~ a (Nu/x/Re)a (61d) 

p_ (8 ,  ]~/2~x(UGAz) z/2 (62a) Z ~  

3 e-,lz (1 + B) 8/2 (b'o/B) z/2 
= 2 fo  '','2 (62b) 

~8] I I  , 

2 "~a,2 
= (32){~(1 +Eu)~  

{(Nu/~/Re) -k a(vsx/v)/~/Re} a/z 
(Q~/Re/2) a/~ 

1/2 z/2 1/2 1/21~ W=~ A2 34 dUG A 2 34 ~. 
v dx v 

(1 -[- B)l/~(bo/B)llZfo" 

- - 4  

(62c) 

(62d) 

(63a) 

(63b) 

(63c) 

/ 2 ~l/2f Eu (1.)sX/Y)\ 
~ ( 1  + Eu)j ~ c ~ R e / 2  ~/Re J 

{ Nu/~/Re q- a (vsx/v)/~/Re'~ a/~ 
c~/-Re~/2 j . (63d) 

Once the definitions (a) are accepted, the 
other relations (b, c, d) follow from equations 
and definitions to be found elsewhere in this 
paper. For completeness we append the corres- 
ponding relations for the driving force B; they 
are: 

B = pvsd4/~, (64a) 
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/ B ~  
= --~fo[~ I (64b) 

= - -  I J  (64c) 

(vsx/O/ /Re 
= o N u / x / R e  " (64d) 

G r a p h i c a l  r e p r e s e n t a t i o n .  Inspection of equa- 
tions (600, (610, (620, (63c) and (64c) shows 
that to every set of values o f / ,  J, and K, there 
corresponds a set of values of X, Y, Z, W and B. 
Moreover /, J and K are linked via equation 

(51), which is expressed quantitatively by Table 
4. It follows that the data of Table 4 can be 
cross-plotted in various ways. 

The manner of cross-plotting which we choose 
is shown in Figs. 9 and 10. In the former, Y is 
plotted vs. X for various values of B; in the 
latter Z is plotted vs. W for various values of B. 

D i s c u s s i o n .  It would be inappropriate here to 
discuss the significance and utility of Figs. 9 and 
10; these matters will be taken up in the later 
publications already referred to. 

IO00 
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IO0 ~ 4 ~ ~ / 

_ . . I /  / / i  

I / / / F  # / / 

i . /  , ' -  t / /  / / I 
,- / r / ,  / I 

L../ I 

- --  1 / d 

_ . . I  / 1 O. ~ ~.._ ~ / 
_i / 

-12 -I0 - 8  - 6  - 4  - 2  0 2 4 6 8 

X 

FIO. 9. X vs. Y with B as parameter. 
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Z 

3'5 b 

• I0 
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0 
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0 8  
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- 0 . 9 5  ~ ,  

- 4  - 3  - 2  -~ 0 n 2 3 

W 

FXG. 10. Z vs. W with B as parameter.  

6. C O N C L U S I O N S  

(a) The differential equation for the distribu- 
tion of  a conserved property P in a laminar 
boundary layer has "similar" solutions pro- 
vided: (i) that the velocity boundary layers are 
"similar", (ii) that the values of P in the fluid 
adjacent to the interface and in the transferred 

Z* 

substance, Ps and PT are related to the stream 
velocity uG in accordance with equation (20). 

(b) A survey has been made, and presented in 
Tables 1, 2 and 3 and in Figs. 2 and 3, of the 
relatively few exact solutions of the problem 
which are available in ~he literature. They are 
all for the case in which Ps and PT are uniform. 



340 D . B .  S P A L D I N G  and H. L. EVANS 

(c) New solutions have been obtained by 
numerical  quadra ture  for s tream-function distri- 
butions characterized by three terms of  a poly- 
nomial  expansion (equat ion (48)). These have 
been used to generate new approximate  solutions 
for real flows. Agreement  with the exact solutions 
is mostly within a few per cent. The  number  of  
new solutions which can be generated f rom the 
tables greatly exceeds the number  which have 
hitherto been available. 

(d) The  error  in the approximate  solutions is 
thought  to stem in part  f rom a modificat ion to 
the three-term stream funct ion distr ibution which 
has been introduced so as to prevent  divergence 
o f  an integral. I t  is possible that  less inaccurate 
modifications can be found. 

(e) The new solutions have been displayed, in 
Figs. 8, 9 and 10, in ways which permit  their 
use in the solution of  non-similar  mass transfer 
problems. 

(f) The  effect of  mass transfer on the value o f  
the conductance  can be approximately  repre- 
sented, over  a fairly wide range o f  conditions,  
by the equat ion:  g /g*  = (1 + B) -°'4. 

7. APPEAL 

We here repeat the appeal  made  at the end of  
Paper 2 o f  the series. Conscious  that  our  survey 
of  the world 's  mass transfer l i terature has been 
incomplete,  we ask readers to tell us o f  exact 
constant-property solutions which we have 
missed. We shall be part icularly grateful to learn 
o f  current  computa t iona l  p rogrammes  in this 
field. 
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