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Abstract—As a preliminary to the presentation of general methods of mass transfer rate prediction,

to follow in later papers, a study is made of the “similar” solutions of the differential equations

governing the distribution of an arbitrary conserved property. The solutions available in the literature

are collected. New solutions are presented valid for a two-parameter family of velocity distributions.

It is shown that these suffice for the approximate prediction of the dimensionless conductance for a
wide range of the variables: Prandtl/Schmidt number, Euler number, and driving force.

Résumé—A titre d’introduction a la présentation des méthodes générales d’évaluation du transport

de matiere qui doit suivre dans les prochains articles, on a fait ici ’étude des solutions “‘similaires”

des équations différentielles régissant la distribution d’une propriété arbitraire qui se conserve. Les

solutions fournies par la littérature ont été réunies. De nouvelles solutions, valables pour une famille

de distributions de vitesses & deux parametres sont présentées. On montre qu’elles suffisent pour une

prévision approximative de I’évolution d'un grand nombre de variables: nombres de Prandtl, Schmidt,
Euler et force dynamique.

Zusammenfassung—Als vorlidufiges Ergebnis spiter folgender Arbeiten iiber allgemeine Methoden
zur Bestimmung des iibertragenen Stoffanteils, wird von ,,dhnlichen* Losungen der Differential-
gleichungen berichtet, die massgebend sind fiir die Verteilung einer beliebigen Erhaltungseigenschaft.
Aus der Literatur verfiigbare Losungen sind zusammengestellt. Die Giiitigkeit neuer Losungen wird
fiir eine zweiparamentrige Gruppe der Geschwindigkeitsverteilungen gezeigt. Diese Losungen reichen
aus, das dimensionslose Verhalten fiir einen grossen Bereich der Verdnderlichen: Prandtlzahl,
Schmidtzahl, Eulerzahl und der treibenden Kraft angendhert vorauszusagen.

AHHoranma—LlIcxoA ©3 pe3yJbTATOB Ipelbfyllell craTbH, JTATCA NpeaBapHTeIbHOe
paccMoTpeHne OOIIMX MeTOOB PacyéTa CKOPOCTH MacCooOMeHa, OCHOBAHHBIX HA «I0J0GHBIX»
peltennAx puddepeHUUaNbHEX YPABHEHUA NP NMPOU3BOJBHHX (QU3UYECKUX NapaMeTpax.
OGofImaloTea TaKk:Kke pelleHusA, UMelonuecsa B auTeparype. Ilpenmoskenntie HOBBIe peleHUs
CHIPABEVIMBE HPH HONYILEHUH JBYXHApaMeTPUYHOCTH ceMelicTBa mpomieil CKOPOCTH B
norpaunuHoM ciaoe. IloxasaHo, YTO OHM MPUrOHBl AIA HpuOMIKERHOro noacyéra Gespas-
MepHOT0 MOTOKA JUIA G0JbLIOro 4nciaa mepeMeHHHX: yncen Ilpanarasa, HImupra, diiaepa un
IBVKYILeN cuubl (Meperana AaBlleHnil).

NOTATION f = Dimensionless stream function

b = Dimensionless conserved property (equation 8), (—);

(equation 23), {(—); fo = Value of f at interface (equation 12),
b, = Gradient of b adjacent to the interface (—);

(equation 26), (—); Jf,, = Dimensionless velocity gradient
B = Driving force for mass transfer (equation interface (equation 48), (—);

24), (—); f,” = Dimensionless measure of (&%/¢y?) at
C = A constant (equation 6), (various); interface (equation 48), (—);

¢; = Drag coefficient (section 5.2), (—);
Eu = Euler number (equation 44), (—);
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G = Total mass flux vector (equation 1),
(Ibw/ft*h);
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g = Mass-transfer conductance (equation
31); (Ibm/ft*h);

g* = Value of g for B = 0 (equation. 57),
(Ibm/ft2h);

I =Tntegral expression (equation 51), (—);

J = A coefficient (equation 52), (—);

K = A coefficient (equation 53), (—);

k = A constant, taken equal to zero in bulk
of paper (equation 20), (—);

m'’ = Mass transfer rate per unit interface
area (equation 4), (Ibp/ft?h);

n = Exponent (equation 6), (—);

Nu = Nusselt number (equation 46), (—);
P = Any conserved property of the second
class [1] (equation 1), (various);

Re = Reynolds number (equation 46), (—);

u = Velocity component parallel to interface
(equation 5), (ft/h);
v == Velocity component normal to inter-

face (equation 5), (ft/h);

W = Curvature parameter containing 4,
(equation 63), (—);

X = Curvature parameter containing 4,
(equation 60), (—);

Y = Parameter measuring rate of growth of
4, (equation 61), (—);

Z = Parameter measuring rate of growth of
4, (equation 62), (—);

x = Distance along interface in main-stream
direction from start of boundary layer
(equation 95), (ft);

y = Perpendicular distance from interface
(equation 4), (ft);

B = A constant (equation 9), (—);

y = Exchange coefficient (= diffusion co-
efficient X fluid density, or thermal
conductivity = specific heat at constant
pressure) (equation 1), (Ibw/ft h);

& = “A” thickness of the velocity boundary
layer (section 5.1), (ft);

8, = Momentum thickness (ft);

4, = Convection thickness (equation 38), (ft);

4, = Conduction thickness (equation 33), (ft);

n = Dimensionless  space  co-ordinate
(equation 8), (—):

¢ = Dynamic viscosity of fluid (equation
32), (Ibw/ft h);

v = Kinematic viscosity of fluid (equation

46), (ft2/h);
p = Density of fluid (equation 5), (Ibn/ft?);
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¢ ==Prandtl or Schmidt number (equation
¢ = A function of 4 (equation 18), (—);
w = Variable proportional to 5 (equation

Subscripts
G = denotes fluid state in main-stream;
S = denotes fluid state adjacent interface;
T =denotes fluid state in transferred
substance;
0 = denotes interface.

Also prime ' denotes differentiation with
respect to 7.

1. INTRODUCTION

1.1. The standard problem of mass transfer theory
THIs paper is the third in a series devoted to
methods of predicting mass transfer rates
through laminar boundary layers. The first two
papers have been concerned with how the mass
transfer through the phase interface affects the
velocity distribution in the boundary layer;
in these papers the rate of mass transfer was
supposed known. We now turn to the main
question: How is the mass transfer rate to be
calculated ?

A fairly general answer to the question has
been given in a recent paper in this journal [1]:
it is that the prediction of a steady mass transfer
rate involves the solution of the equation:

G.(VP—Vi{y(¥P}=0 M
with boundary conditions:
in main-stream: P = Pg 2)
in fluid at interface: P = Pg 3
and
Iy OPIOYks @

Pg — Pp

Here P is any conserved property, e.g. enthalpy
(Btu/lbm) or mass fraction of a
chemically inert mixture component;

G is the local total mass flux vector
(Ibm/ft?h);

y is the local exchange -coefficient
(diffusion coefficient times mixture den-
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sity, or thermal conductivity divided
by specific heat at constant pressure)
(Ibm/ft h);

m'" is the mass transfer rate, i.e. the compo-
nent of G normal to the interface and
directed towards the bulk of the fluid
(Ibm/ft?h);

y is the distance co-ordinate normal to the
interface which is zero at the interface
and positive within the fluid (ft);
is the value of P within the main-stream
(outside the boundary layer);

Py is the value of P in the fluid immediately
at the interface;

Py is the value of P in the transferred
substance, a concept which is discussed
in [1].

Pg

Equation (1) does not stand alone, but must
be solved simultaneously with the equations of
momentum and continuity which govern the
motion of the fluid; for G must be known as a
function of position if (1) is to be solved for P.
It is the latter equations which formed the
subject of Papers 1 and 2 of the series [2, 3].

The present paper begins the discussion of
equation (1) for the particular circumstances
of the laminar boundary layer.

1.2. An appreciation of the mathematical problem

Equation (1) is a partial differential equation,
the exact solution of which will ordinarily
require extensive numerical work. Coupled with
the fact that the momentum equation is of the
same nature, this difficulty renders the obtaining
of exact solutions an uneconomic task in most
circumstances.

In Paper 1 it was shown how the difficulty
with the momentum equation has been resolved
for laminar boundary layers by the introduction
of approximate methods which greatly reduce
the labour of computation but still give accept-
able accuracy in most circumstances. Corres-
ponding approximate methods exist for equation
(1) also.

The approximate method of Paper 1 involved
the use of auxiliary functions, which were
derived from a family of exact solutions of the
equation of the velocity boundary layer; the
latter are the so-called ‘‘similar” solutions,

D. B. SPALDING and H. L. EVANS

which were discussed in Paper 2 of the present
series. It will therefore not be surprising to
find that “‘similar” solutions of equation (1)
perform an equally important role in the approxi-
mate methods of solving this equation.

The mathematical problem therefore has at
least two important aspects; one of them
concerns the obtaining of the family of similar
solutions; the other concerns the use of the
resulting functions in a general method of mass
transfer prediction.

1.3. Purpose and outline of present paper

In Paper 1 we presented the approximate
method for calculating the velocity boundary
layer, and deferred until Paper 2 the detailed
discussion of the functions derived from the
similar solutions. In dealing with equation (1)
however, the reverse procedure is more con-
venient. The present paper is therefore devoted
to the similar solutions of equation (1) under
laminar boundary layer conditions, and to the
presentation of the important functional
relationships. The use of these functions in the
solution of the general problem of mass
transfer prediction will be dealt with in
subsequent papers.

It follows that the present paper is only of
background interest to those readers who merely
want to know how to calculate mass transfer
rates. The paper is chiefly valuable to those who
wish to know why and under what circumstances
the procedures which are recommended in
subsequent papers may be expected to work
well.

In discussing the “‘similar solutions’’, we shall
present a compilation of all the relevant data
which we could find in previously published
exact solutions. We shall then augment these
data by Tables calculated by us.

In Section 2, we have presented the
mathematics of the similar solutions at some
length. Although the treatment is novel only in
detail, we feel that the extended treatment is
justified by the absence of any single appropriate
publication to which we could refer. We have
paid particular attention to the provision of
formulae permitting transformation from one
type of notation to another.

Section 3 contains the compilation of already
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published data, while Section 4 contains our own
contributions. We provide graphs, e.g. Figs. 5,
6 and 7, which display some of the new data
and permit comparison with the old.

Finally, Section 5 contains two re-presentations
of the new solutions which will serve as the
auxiliary functions in general approximate
methods to be presented in later papers in the
series.

2. THE MATHEMATICS OF THE
SIMILAR SOLUTIONS

The laminar-boundary-layer equation and
boundary conditions

We restrict consideration to two-dimensional*
laminar boundary layers with uniform material
properties. Using a rectangular co-ordinate
system, the basic equation (1) now reduces to:

2.1

oP o*P

JoP
pU 5+ pU 5 3y Va—yz=0 (5

where p = fluid density, assumed uniform
(Ibm/ft?);

x = distance along interface in flow
direction (ft);

y = distance from interface into fluid (ft);

u = velocity component in Xx-direction
(ft/h);

v = velocity component in y-direction
(ft/h).

The “‘similar” velocity distributions. We have
already established, in Paper 1, that a condition
for the existence of “similar” velocity profiles
is that the main-stream velocity # obeys the
relation:

4 = Cua® (6)

where C and n are constants.
Under these conditions, the same reference
implies that:

u=qu’ (7)

* The resulting solutions are relevant to axi-symmetrical
flows also, by reason of the existence of the Mangler
transformation, as explained in Paper 1 of the present
series.
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and

o= (3 5) wre-v+n ®
where f* = dffd 1

S is the dimensionless stream function
which depends only on 7;

n is the dimensionless distance co-
ordinate, namely y{(dug/dx)/v8}12;

v is the kinematic viscosity of the fluid
(ft?/h); and

B is a constant related to n by:

B =1/(1 — n/2). &)

Inserting these relations in equation (5), there

results
dug ©oP v dug\/?
“6Tdx " Bug f'_(fe E)
- D5~ L T=0. (0
Meanwhile, the definitions imply:
m'' = pvg 1

while, because 5 equals zero at the interface
(S-state, equation (8)) implies:

we—(£G) B @

where f is the value of fatn = 0.
These two relations enable the boundary
condition (4) to be rewritten for a similar velocity

layer as:
duc\"2f, v (9P/oy)s

(’3 dx) B pBs—Py 13

Now, since
g {d“G / vﬁ} (14)

we can write:

oP dug ve/op

@)= {s] #) @) 0
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Combining (15) with (13), there results:

Y. (9P/om)s
—fo—‘pu Pg — Py 1 16
1 (@pens 19
T o Ps—Pr
where g = pyfy. {an

Clearly o stands for the Prandtl number if
v represents the thermal conductivity divided
by specific heat; it stands for the Schmidt
number if y represents a diffusion coefficient
multiplied by the mixture density. Which is
appropriate depends of course on the nature of
the conserved property represented by P [1].

Now it will be recalled from Paper 1 that, if
the velocity profiles are to be similar, as has
been postulated, f, has a constant value for a
given boundary layer. We therefore deduce
from equation (16) that, since o is also a constant
for a given fluid, (0P/on)s must be proportional
to Ps — Pr.

Conditions for similarity of P-profiles. So far
we have not required that the P-profiles in the
boundary layer should be geometrically similar
to each other at successive stations downstream.
We now introduce this restriction by making the
postulate:

P—Pg=(Pr—Ps).4(n) (18)

where
é(n) stands for some function of », and
Pr — Ps may in general be a function of the

stream velocity Ug.

Equation (18) satisfies the requirement de-
duced in the foregoing section from the boundary
condition (16). It also satisfies the requirement,
characteristic of all boundary layer flows, that
the value of the conserved property in the
main-stream, namely Pg, is independent of
downstream distance.

Insertion of (18) in the differential equation
(10) leads to:

Bf ¢uc d
Pr — Ps dug

where ¢’ stands for d¢/dn and ¢" for d®p/dn2.

(Pr—Po) —f — ¢ =0 (19)

D. B. SPALDING and H. L. EVANS

Equation (19) is an equation with only one
independent variable provided that the term

uG d
Py — Ps dug (Pr — Py)
is a constant.

The condition for the validity of the similarity
requirement (18) is thus:

¥e 4 by Py —const. = k 20
e duc,( T — Ps) = const. = k (say). (20)

The differential equation then becomes:
¢+ ofd — kBf 4" =0. 21y

The boundary condition (16) meanwhile reduces
to:

— fo = (¢)ofo (22)

suffix 0 again indicating evaluation at the inter-
face, sometimes called the “wall”, where » = 0.

Further restriction of the scope of the inquiry.
Very few exact solutions have been derived for
values of k different from zero [4]. Moreover,
they have all been obtained for the case B =0
(significance explained in [1] and below); they
are thus of relatively minor importance in mass
transfer studies.

The experimental circumstances under which
the properties of the fluid adjacent to the inter-
face and of the transferred substance, Ps and
Pr, both vary so as to obey equation (20) will
be very rare in practice. We have therefore
restricted consideration to the case in which
Pr — Ps is independent of downstream distance
(i.e. of ug). Thus we take k = 0 in all further
studies.

Inspection of equation (18), evaluated for the
interface, reveals that, since Pg is a constant,
both Ps and Pr must be constants. The physical
interpretation of this varies according to the
circumstances: if P is enthalpy, for example, we
deduce that not only must the wall temperature
remain uniform, but the heat transferred through
the S control surface [1] per unit of mass
transferred must also be uniform.

Since Ps and Pr are now to be considered as
uniform, we can introduce the notation
developed for this case in the paper just referred
to. We then have:
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_P—Ps Pg — Ps
b=Ps——PT(—Ps—PT—¢) 23)
and
Pg — Ps
B=bG—"K:_"PTT- (249)

The differential equation (21) therefore reduces
to

V' +aofb =0 (25)
with boundary conditions:
t 7=0:6=0b=b,=— ]
at 7 0 Gfo (26)
at n=o0:b=B8B.

The mathematical problem which we have to
solve is thus specified by (25) and (26), wherein f
is of course a function of 5, obtainable from the
solutions summarized in Paper 2, while the
prime indicates differentiation with respect to .
We shall refer to equation (25) as the “similar”
b-equation.

2.2. Solving the “‘similar™ b-equation

The solution of equation (25) presents no
difficulties; for, provided f'is regarded as known,
the equation is linear in b. The steps in the
solving procedure, first devised by Pohlhausen
[5] for the case B = 0, are as follows:

(i) By use of the integrating factor exp {[of dn},
equation (25) may be integrated; there results:

b’ = const. exp {— [7 o fdn}. @7

Clearly the constant in (27) must equal b,, the
value of the b-gradient at the wall.

(ii) Making this insertion, and carrying out a
further formal integration, we obtain

b =b; [yexp{—[3ofdn}dn

in which the boundary condition: 5 =0 at
7 = 0 has already been inserted.

After insertion of the boundary condition:
b =B at n = oo, and further rearrangement,
equation (28) yields expressions for the wall-
gradient, namely:

by = B[y exp {— [} o fdn} dn

(28)

(29)
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and for the b-profile, namely:

b _[3exp {— [3ofdn} dy
B fFexp(~ [Tofdnydn’

It is with the former quantity that we shall
chiefly be concerned.

Discussion. It will be noted that (29) and (30)
can be evaluated by quadrature once f(y) and
o have been specified. This is a simple computa-
tional task.

The relation: b, = — o f;,, has not yet been
used; it is evidently not so much a boundary
condition as a compatibility requirement between
the b-profile and the f-profile from which it is
deduced. The consequences of the requirement
will appear below (Sections 2.4 and 4.4).

(30)

2.3. Relations between the solution of the equation
and quantities of physical significance

Before discussing the evaluation of (29), we
shall examine its relation to quantities which are
used in more general mass transfer problems.
These are: the mass-transfer conductance, g,
and certain boundary-layer thicknesses. In
addition, the opportunity will be taken to make
connexion with quantities which conventionally
appear in discussions of the similar solutions.

The mass-transfer conductance, g. Following
Spalding [1] we define a conductance g by the
“Ohm’s Law” relation,

€y

The quantity g has the dimensions of lby/fth
and is equal to the mass velocity of the main-
stream multiplied by the Stanton number.
From comparison of equation (31) with
equation (11), (12), and (26), there results:

m'=g.B.

’

g/(u p dug/dx)/2 = /31/20‘ E?'

(32)

Comparison of equations (32) and (29) indicates
how the conductance g can be deduced from
the solution of the b-equation.

The conduction-thickness, A4,. It is often
convenient to use the concept of “boundary-
layer thickness” in solving mass transfer prob-
lems. As with the velocity boundary layer,
many definitions are possible, and several are
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convenient. The first of these is 4, (the notation
is that of Smith and Spalding [17]), defined by:

4, = Bj(9b]oy)s. (33)

Clearly 4, is the distance at which a tangent to
the b-profile at the interface intersects the line
of maximum-b (Fig. 1).

Z‘ | — Interface ,

FiG. 1. Ilustrating the relation of the “conduction
thickness”, 4, to the variation of » normal to the wall.

To relate 4, to other physical quantities and
to the quantities derived from solution of the
equation, we merely have to invoke the defini-
tion of » (see equation (14)). There resuits:

4, {(dug/dx)/v}*/® = B/2B/b’. 39

Three further relations involving 4, are worth
establishing. The first is obtained simply by
squaring equation (34); there results an expres-
sion of a form which has proved to be useful
in Paper 1, namely:

Af dug - (3)2

v odx b

v dx (33)

Since, for similar boundary layers, we also
have

= = Cug" (6)
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it is possible to deduce from (35) that:
ug dd; ‘B\?
v oax AP (bg) ‘

The expression on the left-hand side of
equation (36) is a measure of the rate of growth
of the boundary-layer thickness; it will be
found wuseful in approximate methods for
predicting mass transfer rates.

The third relation involving 4, is that which
links it to the conductance, g. The definitions
are readily seen to imply:

(36)

gdyfy = 1. (37)

This relation permits evaluation of g once 4,
has been deduced from a boundary-layer
analysis.

The convection-thickness, 4,. Another con-
venient definition of a thickness of the boundary
layer of b is:

4, = [P (u/uc) (1 — b/B) dy. (38)

This definition implies that the quantity pug B4,
measures the convection flux along the boundary
layer of the property b, measured below a
base-value which prevails in the main-stream.
4, is thus the analogue of the momentum thick-
ness of the velocity boundary layer; we shall
call it the “convection-thickness”.

In relating 4, to quantities appearing in the
solution of the differential equation (25), we
firstly introduce f” and % into (38), obtaining:

4y {(dug/dx)[v}? = BV [ [ (1 — b/B) dy. (39)

We then note that equation (25) can be integrated
once formally to give:

'Y + o {[fb)y — [3f'bdn} =0. (40)

Taking infinity as the upper limit, where b = B
and »' = 0, and noting that f« can be written
as fo + f& f'dn, equation (40) becomes:

by =0 B{fy+ |2 f(1—b/B)dn}. (41)

Finally we may eliminate the quadrature expres-
sion between equations (39) and (41) and replace
o fy by — b;. There results:

BY*(1 + B) b,
BT

A2{((114(;,/(?1)()/11}1/2 = B

42)

which is the desired relation.
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The final relation involving 4, which we shall
derive is that giving the ratio of boundary-layer
thicknesses, 4,/4,. This is obtained from (42) and
(34), and is:

(1 4+ B) (b\?
S (5)
Relation to other quantities appearing in the
literature. Solutions of the similar laminar-
boundary-layer equations appearing in the
literature are usually presented in terms of the
distance x of the point in question from the start
of the boundary layer. We here list, without
comment, some relations which will enable
quantities expressed in these terms to be trans-
lated into the present terms, and vice versa:

Eu=pj2— )
=1/(1 —n)

4,
a, (43)

(44)
where

Eu = Euler number, i.e. the exponent in the
relation between ug, and x, namely

ug oc xBv, 45)

x [ v\ 1 b

NavRe =7 () =g 5
= [{(2/B) — 1} {(43/») (duc/dx)}]" (46)

4 XUG
X

1/2
T) = [{@2/B) — 1} {(4%*v) (dug/dx)}] T2
47)
where

Nu = Nusselt number;
Re = Reynolds number; and
4 without suffix stands for either 4, or 4,.

1t should be noted that some of the expressions
in (46) and (47) become indeterminate for 8 = 0,
i.e. when ug is independent of distance. It then
becomes preferable to replace

{(2/B) — 1} {(4%/v) (duc/dx)}
by
{2 — B)/2(1 — B)} {(uc/v) (d4%/dx)}.

2.4. Procedure for obtaining particular solutions
It is clear that, whatever the form in which

Y
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the solution is to be presented, the quadrature
of (29) has to be evaluated. This equation there-
fore represents the key step in obtaining the
solution. We now indicate the order in which the
necessary steps may be taken.

We suppose that 8 and o are given values and
that it is desired to obtain values of the mass
transfer conductance for various B values. The
following procedure suffices:

(i) From the similar solutions of the velocity
equation, seek out the one-parameter family of
f(n) functions corresponding to the 8 in question.
The parameter is fj.

(ii) For the particular ¢ in question, evaluate
the quadrature of (29), thus obtaining b;/B as a
function of f,.

(iif) For each value of f;, evaluate b, from the
boundary condition (26).

(iv) Combining the results of steps (ii) and
(i), tabulate by and b;/B for various B. Then
use equation (32) or the appropriate one of the
subsequent equations, for expressing g, 4,, 4,
etc., as functions of B.

3. SURVEY OF EXISTING SOLUTIONS OF THE
“SIMILAR” b-EQUATIONS
3.1. Tabulation of solutions

Evaluations of the quadrature appearing in
(29) have been made by numerous authors.
Most of these, starting with Pohlhausen {3],
have been concerned with the particular case
in which the mass transfer is negligible (i.e.
fo = 0, B = 0). More recently however, solutions
have been published which are valid for non-
zero B although that quantity has admittedly
not often been calculated explicitly. We have
collected all the published solutions which we
were able to find and present quantities derived
from them in the following tables.

The tabulated quantities are 8, o, B, b,/B,
(42/v) (dug/dx) or (ug/v) (d4%/dx), and four
quantities termed X, Y, Z, and W, the latter
quantities will be discussed below (Section 5.2).

Table 1. B =0, various o and B. These data
have been derived from the solutions published
in the pioneering papers of Pohlhausen [5], and
of Eckert [6]. They are valid for heat transfer
in the absence of mass transfer, or for mass
transfer with very small driving forces. The data
of Pohlhausen hold for g8 =0, i.e. for the flat
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Table 1. Exact solutions of the b-equation: B = 0
by J 43 dug | :
B o B , x| X Y | w 11 z . References
| | ‘ o
—0-14 07 03698 |—1-0238 |—1-5807 49727 |—0-8682 0-8238
0-8 03865 |—09372 |—1-5124 49778 |—0-8302 0-8234
1-0 0-4160 |—0-8090 |—1-4052 4-9902 |—-0-7704 0-8224 | \ Eckert [6]
5:0 0-698 —0-2874 |—0-8375 52820 |—0-4463 0-7993 |
10-0 0-871 —0-1845 |—0-6711 54369 |—0-3525 0-7879 :J
| | ‘
00 0-1 0-1953 ] 0 1o 9-4561 0 { 05974 N
05 | 03664 0 0 71590 | © 0-6866 | |
0-6 0-3915 0 0 70416 0 0-6923
07 04139 0 0 69555 0 0-6966 |
08 0-4340 0 0 6-8925 0 0-6998 LPohlhausen {51
09 04526 | 0 ] 6-8401 0 0-7024 | ¢ with accuracy im-~
10 0-4696 0 ( 0 6-8024 0 0-7044 | { proved by Merk {20}
11 0-4856 0 10 67650 0 0-7063 : |
70 0-9135 0 0 6-4681 0 I 07224,
100 1-0298 0 | 0 6-4508 0 © 07233 ,
150 1-1796 | 0 0 6-4372 | 0 07241
H {
02 i 07 0-4444 1-0127 0-6552 82179 | 02799 | 0-6409 )
0-8 0-4670 09171 0-6235 80933 | 02684 0-6458 |
10 0-5068 0-7787 0-5745 79154 0-2501 0-6530 ;
50 0-898 0-2480 0-3242 7-1142 0-1489 0-6888 |
10-0 ( 1-141 01536 | 0-2552 69363 0-1187 0-6976
|
05 0-7 04705 | 22587 | 1-1455 9-3523 0-4588 0-6007 .
0-8 04951 2-0398 1-0886 9-1729 0-4402 0-6066, |
10 0-5390 r 1-7211 0-9999 8-8866 04108 0-6163!
’ 50 0970 | 0-5314 0-5556 7-6235 0-2465 0-6654 ;
100 1-240 0-3252 04346 7-2984 0-1971 0-6800 |
| L Eckert [6]
1-0 07 0-4959 40664 | 1:6360 10-6129 06151 | 0-56391 |
0-8 0-5225 3-6629 r 1-5527 10-3693 | 0-5906 0-5705
10 0-5704 3:0736 | 1-4223 9-9627 0-5519 0-5820
50 1-043 0-9193 0-77178 8-1475 0-3338 0-64361 |
100 1-344 0-5536 0-6036 7-6158 0-2679 } 0-6657 ° |
1-6 07 0-5144 60467 20450 11-7331 07312 | 0-5363;
0-8 0-5430 5-4265 1-9373 11-4001 0-7027 0-5441 !
1-0 0-5937 4-5393 1-7718 10-9023 0-6572 0-5564j ’
50 1-098 1-3271 0-9581 86177 0-3997 0-6258
10-0 1-416 0-7980 0-7429 80357 0-3210 0-6481 ‘J

plate; those of Eckert hold for non-zero values

of B.

Table 2. B =0, various o. The values con-
tained in this table have mainly been deduced
from the paper by Mickley, Ross, Squyers and
Stewart [7], which represents the most extensive
single source of exact solutions of the “‘similar”

b-equations with non-zero B. Since 8 = 0 for
these solutions, the underlying f(n) relations are
those for the flat plate in a uniform stream; we
therefore tabulate (vq/v) (d42/dx) rather than
(42/v) (dug/dx), since the latter quantity is
zero throughout.

Only for o = 1 have data other than those of
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: b ug d4}
o B | B . dx X Y W zZ
06 5171 ' 008205 297-06 —8-618 81-73 —2-898 3113
2023 | 01573 80-87 —3372 30-64 —1-297 1745
0-9091 0-2333 3673 —1-515 16-48 —0-6316 1-194
0 0-3917 13-03 0 7-03 0 0-6927
—0-3800 0-5582 6419 0-633 3.828 0-3123 0-4585
—0-5800 i 07314 3-738 0967 2:372 0-4983 L 03247
—0-6988 09107 2:411 1-165 1-594 0-6203 ’ 02407
—0-8625 l 1-4757 0-9583 1-437 0-6465 0-8120 I 01165
—09352 22687 0-3886 1-558 0-2824 09147 { 0-05708
07 6774 . 00731 3746 —9-671 134-7 -2:842 L3425
2:448 | o1517 86:94 —3-500 39-9 —1-2597 i 18631
1-054 i 02349 36-25 —1-506 18-84 —0-6085 [ 12455
0 04137 11-688 6963 0 0-6960
—0-4079 I 0-6067 5434 0-583 3479 02945 i 04489
—0-6119 ' 0-8089 3.056 0-874 2046 0-4 0-3106
—0-7280 ©1-0199 1-923 1-040 1-324 0-5776 0-2267
—0-8815 . 1-6846 0-7047 1-260 0-5072 0-7459 0-1054
—09457 | 26170 0-2939 1-351 02146 0-8325 ' 005021
I
08 8739 | 00647 469-4 —1092 222:0 —2:801 | 3745
2915 0-1455 94-44 —3-644 51-58 —1-2301 1-982
1-2034 | 02350 36:20 —1-504 21-50 —0-5898 I 12961
! 0-4342 10-610 6886 0-7001
—0-4337 0-6522 470 0-5421 3199 0-2794 0-4880
—0-6398 I 0-8842 2-558 07997 1-790 0-4395 02970
—07527 i 112714 1-573 0-9409 1-1203 05417 0-2137
—0-8966 1-8929 0-5882 1-1207 0-4084 0-6908 | 009566
—09537 | 29656 02274 1-1921 0-1687 0-7650 0-04452
09 11-147 [ 00571 6136 —12-39 363-9 -2-769 4074
3-433 " 01390 103-4 —3-810 66:54 —1-2063 2-103
1-359 02343 3644 —1-510 24-45 —0-5743 . 1346
. 0-4525 9:766 0 6-838 I 07026
—0-4568 0-6965 4-123 0-5076 2:956 0-2666 L 04279
—0-6645 09577 2:181 0-7383 1-5845 0-4162 0-2837
—-07744 1-2328 1-316 0-8604 1-1058 0-5100 0-2007
—0-9085 i 21011 0-4530 1-0094 0-3359 0-6449 0-08755
—0-9600 133142 0-1821 1-0667 0-1358 0-7082 0-03973
|
10 i 0 © —© © — H ®
178- 70 | 0004748 8-8735 x 104 —178-70 6654 x 104 —11-376 [o17159
59-592 i 0013647 10-4711 x 10° —59-592 8054-1 —63295 i 96536
31-829 ;0024438 3-4490 x 10* ~31-829 2511-5 —4-4567 58931
20-226 0-036709 1-4841 x 10* —20-226 11131 —3-4205 5:3844
14-077 0-050229 79271 x 10 — 14077 594-54 —2-7457 44111
10-358 0-064356 4-7549 x 10" —10-358 35661 —2:2639 3-7237
7-9090 0-080462 3-0893 x 10 —7-9090 231-69 —1-7304 1 29238
61984 0-096966 2:1271 x 10? —61984 159-53 —1-6126 | 2:8091
4-9492 0-11430 1-5309 x 10t —4-9492 114-815 —1-3798 i 2:4878
4-0059 0-13239 1-1411 x 10 —4-0059 85-582 —1-1866 2:2241
32738 015119 98-750 —3-2738 65-621 —1-0234 2-0039
26933 0-17065 68-678 —2-6933 51-508 —088326 | 18168
2:2243 0-19074 54-976 —2-2243 41-229 —0-76183 1-6565
1-8396 0-21140 44751 —1-8396 33-565 —0-65536 1-5174
1-5198 023262 36:959 —1-5198 27-720 —0-56123 1-3957
1-2509 0-25437 30911 —1-2509 23-182 —0-47740 1-2885
1-0226 0-27660 26-141 —10226 19-606 —0-40232 1-1937
0-82686 0-29931 22-325 —0-82686 16-744 —0-33451 1-1086
065785 0-32246 19-235 —0-65785 14-426 —0-27314 1:0325
0-51086 0-34603 16-703 —0-51086 12:527 —0-21729 0-96393
0-38220 0-37001 14-609 —0-38220 10-956 —0-16627 0-90191
0-26894 0-39437 12-859 —0-26894 9-6446 ~0-11948 0:84559
0-16872 0-41910 11-386 —0-16872 8540 -0-07 0-79429
0-079600 0-44418 10-137 —0-079600 7-6028 —0-036735 074739
0 0-46960 9-06935 0 68020 0 0-70439
—0-071376 0-49534 81513 0-07136 61134 0-034070 0-66490
~0-13562 0-52138 73573 0-13562 5-5180 0065741 0-62850
—0-19365 0-54772 6-6667 019365 5- 0-095244 -59489
—0-24623 0-57434 6-1999 0-24623 4-5458 0-12278 0-56379
—0-29402 0-60123 5-5328 029402 4-1496 0-14853 0-53496
-0-33758 0-62838 50650 033758 3.7988 0-17265 0-50818
~0-37739 0-65585 4-6506 0-37739 3.4872 0-19528 0-48325
—041386 | 068342 428205 0-41386 37386 021654 -
—0-44735 . 071129 39531 0-44735 29648 0-23655 0-43834
—-0-47817 | 0-73938 3-6584 0-47817 2-7438 0-25540 0-41807
—0-53286 : 0-796195 31549 0-53286 2-3662 028998 0-38132
—0-57973 | 0-85380 27436 0-57973 20577 0-32088 0-34802
—062018 | 091213 24039 0-62018 1-8029 0-34863 032026
—~0-65531 | 097113 21207 0-65531 1-5905 0-37363 0-29479
~068600 | 1-03077 1-88226 0-68 1-4118 0-39624 0-27206
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Table 2 (continued)
B ug da3 | i
o B B v dx ’ X Y w VA
1-0 —0-71294 1-09100 168027 0-71294 1-2602 041674 | 025170
—0-73671 1115178 1-50762 073671 1-1307 043539 | 023340
—0-75779 1-21306 1-35915 0-75779 1:0194 0-45240 0-21690
—0-77654 127482 123064 0-77654 092298 046796 0-20200
—0-79330 1-33703 1-11879 0-79330 0-83909 0-48223 0-18848
—0-85512 165382 073123 0-85512 0-54842 0-53829 0-13680
—0-89361 197824 0-51106 0-89361 0-383295 0-57661 0-10298
—0:91899 2-3083 0-37535 0-91899 0-28152 060377 . 0079833
| —094504 2:9803 022517 0-94904 0-16888 063851 | 0051432
—096529 36627 0-149085 096529 0-11181 065873 | 0035532
—0-97495 43516 0-105615 0-97495 0079212 | 067147 0:025877
—0-99039 71397 0-039235 0-99039 0-029426 069325 0-010092
11 17713 004391 10372 ~16:10 9770 —-2:917 5.084
4635 0-1259 12625 —4-214 109-6 —1-200 2.408
1-688 0-2304 37684 —1-534 3139 —0-5527 1-452
0 0-4358 84751 0 6758 0-7013
—0-4971 07823 3268 0-4519 4.873 0-2391 0-3991
—0-7049 11034 1-643 0-6408 1737 0-3663 0-2530
—0-8089 1-4425 09612 0-7354 07774 0-4422 0-1725
—09275 2:5154 0-3161 0-8432 0-1466 0-5441 0-07007
—09693 40128 0-1242 0-8812 003611 0-5920 0-03108
14 34-063 0-02906 2368-0 ~24:33 4292:0 -3.538 7-649
6956 0-1067 1756 <4969 2288 ~1-264 3-037
2145 0-2308 37-56 —~1-532 3976 ~0-5299 1-632
2:0 i 11686 0-01210 1-366 x 104 —5843 8-490 x 10* —~5428 16-42
14-300 0-07417 3-50 ~7-150 740 —1-4668 4-708
- 3579 01976 51-240 —1-790 90-5 —0-5349 2053
Lo 0-5971 5-6100 0 6617 06333
I —06264 11288 1-5763 03132 1-543 0-1528 02734
—08177 17296 0-6686 0-4082 0-598 02135 0-1428
© 08957 2-3684 ; 0-3565 0-4478 0-3021 0-2422 0-08463
i —09670 4-3876 0-10389 0-4835 0-0820 02726 0-02794
| —09872 7-1629 0-03898 0-4936 0-02990 0-2832 0-011045
50 | 3549-0 09963x10-* | 2014-8 x 108 —0-7098 5954x10° | —4197 3148
| "296:35 0-008948 24981 | 5927 2:168 X 104 —2-588 19:47
| 19-741 0-08955 249-41 I 23548 ‘ 2430x10* | -07201 5674
U

Mickley ef al. been used; here the source is the
paper by Emmons and Leigh [8]. Although those
authors were primarily concerned with the
velocity boundary layer, the differential equation
for the latter is identical with equation (25) for
o =1 and B = 0; their data, which are more
numerous than those of Mickley et al. foro = 1,
are therefore usable for the present purpose.

Table 3. ¢ = 01, various B. These data have
been taken from the following papers: Brown
and Donoughe [9], Donoughe and Livingood
{10], Livingood and Donoughe [11], Howe and
Mersman [12].

In this table (42/v) (dug/dx) has been tabulated
in place of (ug/v) (d42/dx). Of course, the one
can easily be derived from the latter by way of
equations (35) and (36).

3.2. Graphical representation
Most of the data contained in Tables 1, 2 and
3 are represented graphically in Figs. 2 and 3.

In each case the ordinate represents the quantity
¢~13 b /B, which may be interpreted, in accord-
ance with the foregoing equations, either as

o=13 (2 — BYV2Nu/+/Re

or as
0.2/3,31/2/ (‘u PduG/dx)l/Z_

The o173 is introduced into the ordinate quantity
in order to bring the curves closer together; the
reason that it does so will be apparent from the
discussion which is to follow in Section 4.2.
The quantity plotted in the abscissa is the mass
transfer driving force B. Logarithmic paper is
used in a manner permitting clear plotting.
Figure 2 is valid for 8 =0 (the flat plate;
uniform fluid stream velocity ug) and for
various values of o. Fig. 3 is valid for a fixed
value of o, namely 0-7 which is a common value
for gases, and shows the influence of 8. The
latter quantity, it will be recalled, measures the
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velocity gradient in the main-stream: B8 =}
corresponds to the stagnation point in axi-
symmetrical flow;* while B = 1 corresponds to
the stagnation point in a two-dimensional
flow. The line marked ¢ = 0-7 on Fig. 2 is of
course identical with that marked § =0 on
Fig. 3.

It will be noted that relatively few exact
solutions are available from which Fig. 3 can
be plotted; in particular, no solutions are
available for negative values of the driving force
B for B values other than zero.

3.3. Discussion

Figures 2 and 3 contain almost all the pub-
lished solutions of the b-equation, for uniform
properties, in the Western literature, with the

* The appropriate transformation must be made
before the 8 = 0-5 curve can actually be used to evaluate
g in axi-symmetrical stagnation-point flow. See Paper 1.

Table 3. Exact solutions
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exception of those which lie on the lines B = 0.
When it is borne in mind that, for complete
coverage, we need a graph such as that of Fig. 2
for every value of 8 (or alternatively one like
Fig. 3 for every value of o), it is clear that much
remains to be done. Even the figures which could
be drawn are seriously incomplete: thus it
appears that no one has obtained solutions for
negative B (condensation, suction, absorption,
and the like) for any case but that of zero velocity
gradient.

Despite the paucity of the data, certain trends
are quite clear. For example:

(i) The ordinate quantity falls as B increases,
and rises as B decreases. Their relation
depends on 8 and on o.

(ii) The ordinate quantity tends to infinity as
B tends to — 1.

(iii) The ordinate quantity increases with
increasing B.

of the b-equation: o = Q-7

| b | 43 dug
B B B S dx X Y w Z References
—0-1988 0 02955 | —2:276 - 0 —® o |
—019 0 03278 | —1768 | —675 2565 | —5175 | 1-149
—018 0 03411 | —1547 | —4115 3400 | —2:632 | 0-9964
—016 0 03579 | —1249 | —2347 4370 | —1377 | 08784
—014 0 03698 | —1024 | —1-581 4975 | —0-8681 | 0-8240
—010 0 03873 | —0-6665 | —0-808 5762 | —04125 | 07651
0 0 04139 0 0 6963 | 0 0-6969
0-6667 0 0-4806 2886 1-355 9830 | 05217 | 05861 ||p
10 0 0-4958 4017 1636 | 10620 | 06150 | 0-5638 Donoughe 9]
—0-0872 16300 | 0-1487 | —4-060 © 0 — © D°“°“i‘.‘°.a“d 4110
0 10536 | 0-2347 0 ~1:506 | 1884 | —0-6080 | 1244 |[[ . . LINEGO (0]
0-6667 10120 | 0-2995 7-431 1320 | 3148 0-4083 | 0-9349 1vingood an i
10 11929 | 02934 | 1162 1813 | 406 05178 | 0-9399 Donoughe [11]
—0-007198 | 13-84 00356 | —1142 @ 0 — @
0 | 6783 | 00730 0 —9671 | 1347 | —2843 | 3425
005 4171 | 01216 6441 | —1934 | 1136 | —0-5054 | 2:0263
015 ‘ 3565 | 01489 | 1177 | —0-182 | 1135 | —0:04366| 1-6828
05 3772 | 01607 | 2580 1332 | 1560 02856 | 15332
1-0 i 4804 |01457 | 4711 2206 | 2569 04068 | 1:6030 |}
05 Lo 047049 2259 11455 | 9354 | 0:45871] 0-60067 4
05 ‘ 096426 | 0-29637 5-692 10202 | 28381 032872 0'94935} owe a;[' 12
05 35510 | 0-16095| 19-301 0-84342| 132:23 019165 | 1-5512 ersman [12]
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FiG. 2. Exact solutions to the b-equation for the flat plate (8 = 0) from Tables 1 and 2. Parts of some
curves have been omitted to retain clarity.

(iv) The ordinate quantity falls as o decreases
when B is positive, but rises slightly when
B is negative.

We now consider ways in which the available
data can be augmented.

4. NEW SOLUTIONS OF THE “SIMILAR”
b-EQUATION

4.1. Preliminary remarks

It is clear from the foregoing discussion,
together with inspection of equation (29), that
the problem of the “similar™ b-equation cannot
be regarded as completely solved until (b,/B)
has been tabulated as a function of the three
parameters: B, B and o, over a sufficiently wide
range of each of the variables for the tables to
be completed by asymptotic formula. Although
only quadratures are involved, the task is a
formidable one. We have not attempted it.

Instead it has been our purpose to examine

whether the solutions cannot be reduced to a
two-parameter family, at least approximately;
for such an approximation would reduce the
computational task by one order of magnitude.
The line of thought which we have pursued is
that pioneered by Lighthill [13], and carried
further by Spalding [14]; both these workers
having been concerned with laminar boundary
layers in the absence of mass transfer (case of
B =0).

We do not seek a two-parameter family of
solutions merely so as to reduce labour: it is
rather that we are here concerned with the
similar solutions as means to an end, i.e. as
the key to the prediction of mass transfer rates
in more general, non-similar boundary layers.
In this work a three-parameter family would be
an embarrassment: there is already sufficient
difficulty in handling one with two parameters,
as will be seen in a later paper of the series.
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FiG. 3. Exact solutions to the b-equation for ¢ = 0-7 and various values of 8 from Table 3.

Characteristic features of the solutions to be
presented. In 1950, Lighthill showed how the
earlier solution of Leveque [15] could be
generalized so as to enable heat transfer rates
(or mass transfer rates with B close to zero)
to be calculated from knowledge of the velocity
gradient in the y-direction close to the wall.
The method is exact, provided that the b-
boundary layer is much thinner than the velocity
layer; this is the case with large o.

Spalding [14] showed that the error in the
Lighthill method can be greatly reduced if
account is taken of the extent to which the
b-layer reaches into the region where the velocity
profile is appreciably curved. Thus, whereas
Lighthill’s analysis led to a single number,
Spalding’s led to a function of a single variable
[Y (X) or Z (W) for B=0 in the notation of
Section 5.2].

The work now to be reported makes the next
step: it includes the effect of non-zero B values.
As a consequence we shall be concerned to
examine the effect on the conductance of two
parameters: ‘“‘the curvature parameter” (X or

W) which Spalding [14] found to be already of
importance for zero values of B; and B itself.

Specifically, we shall be concerned with
distributions of the stream function which can
be expressed in the following form:

f=fo+ 35+ 3777 48)
The three analyses which have been mentioned
can now be characterized as follows: Lighthill
considered the case in which f, and f;”" were
zero; Spalding considered the case in which only
Jfo was zero, in the present paper, all three
coefficients of the expansion may be finite. Of
course f, is always zero, since the fluid can be
regarded as having zero u at the wall.

It should be understood that the solutions
which follow are exact for the particular
f-functions which are examined: the approxi-
mation only enters when the more complex
f~functions of real velocity boundary layers are
assumed to belong to this family.

4.2. Mathematical discussion .
Transformation of the integration variable. On
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insertion of our particular expression for f,
equation (48), in the integral which has to be
evaluated, equation (29), we obtain the following
relation:

Bby = [ exp{— o(fon + 4 fi'n* + gleo'"n“)}(igj

After introduction of a new variable of
integration, w, defined by:

w = (afy[6)% (50
equation (49) reduces to:
(B/by) (afy'[6)* =

Jeexp {—Jo — v® — Ko¥dw = I(J, K) (51)
(say)

where

J = of (6/o f; 1 (52)

afl [ 6 \¥3

This change of variable has the effect of
leaving only two parameters, J and K, in the
expression which has to be computed, namely
the integral on the right-hand side of equation
(51). Calling this integral 7, it will now be our
purpose to establish the function I(J, K); with
this known, equations (51), (52) and (53) will
enable us to calculate (b;/B) for every set of
values of f,, fo', f,;'', and o.

Some special cases. Where J and K are both
equal to zero, the integral reduces to

jgo exp (—e)dw;

this has the value 0-89298, as was shown by
Leveque [15] and Lighthill {13]. In this case,
equation (51) shows that b,/B is equal to
0-616 (o f,)/3. When J is positive and much
larger than both unity and K, the integral
reduces to

> exp (— Jw)dw,

which has the value 1/J; this arises when B tends
to — 1.

The determination of J, K and I. Equation (52)
shows that J can be ascribed a particular number
whenever f;, f," and o are known. Now the

D. B. SPALDING and H. L. EVANS

relation between f, and f, is known, for fixed
values of the pressure-gradient parameter f,
from solutions of the velocity equation (Papers 1
and 2). So J is fixed when o, B and, say, f, are
determined.

K may be evaluated in terms of velocity-
boundary-layer parameters in a similar way.
Hereitisconvenient toreplace f,” by —(f,f, +B);
the equivalence of these two quantities may be
demonstrated directly by evaluation at » = 0 of
the differential equation of the similar velocity
boundary layer, namely (Paper 1):

f7 7+ B — [ =0, (54)

Then equation (53) may be re-written; since
f=0aty=0:

K= _ oS =B ( 6/’)4/’3‘ 55)

Jo

Since 7is a function of J and K, it now follows
that it too can be evaluated if fy, f," and o are
prescribed.

4.3. Computations and results

A convergence difficulty. The quadrature of
equation (51) may be evaluated numerically in a
straightforward numerical manner provided
that the quantity K is positive. When K is
negative however, the integral ceases to be
convergent. This mathematical fact may be
expressed in physical terms as follows:

We are considering mass transfer into a
boundary layer with a parabolic velocity profile.
When the profile is concave upwards, as in
curve (a) of Fig. 4, no difficulty arises; when the
profile is concave downwards however, as in
curve (b), the velocity must actually become
negative at a certain distance from the boundary
layer. The latter behaviour is physically un-
realistic and is the cause of the non-convergence
of the integral. To escape this difficulty, we have
therefore modified the specification of the
f-function for negative K, by requiring that the
velocity profile (f") should remain quadratic up
to the point of maximum velocity; thereafter
the velocity is taken as independent of distance
from the wall. This is shown by curve (¢) in
Fig. 4.

Expressing this modification symbolically, we
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F1G. 4. Quadratic velocity profiles.

may write the new form of equation (51), valid
for negative K as:

) () |

—1/4K
———IEJ exp{—Jw — w®— Kot}dw
e . . v (56)
+ L,m exp {356K3 + (16K2 -7 ) @
3
— 2
+ Y } dw. J

The expression on the right-hand side of (56) is
convergent for all negative values of K.

Procedure for evaluation. The integral in
equation (51) and the first integral in (56) were
evaluated numerically, using Simpson’s Rule.
Generally an w-interval of 0-1 was used, although
a smaller interval was necessary when both J and
K were large and positive. The resulting values
of the integrals are believed to be correct to the
fourth significant figure.

The second integral expression in (56) is
expressible in closed form as:

2mK\ V2 1
(“ T) {e"p (768K3

RN AL SN 1
2K~ 3 ) N4 6(— K)o

L
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This quantity was evaluated by reference to
standard mathematical tables.

Results. The tabulated values of I are con-
tained in Table 4. This table is divided into four
parts: (a) J negative and K positive, (b) J
positive and K positive, (c) J positive and K nega-
tive, (d) J and K both negative. Thus equation
(51) was used for Tables 4(a) and 4(b); equation
(56) was used for Tables 4(c) and 4(d).

4.4. Deduction of new approximate solutions for
real flows

“Real” and “artificial” flows. Table 4, together
with equations such as (26) and (51), enable
exact values of b,, B, etc. to be predicted for
prescribed values of f,, f.', 8 and o, provided
that the f profile has a form leading to (51) or
(56).

Let us distinguish here between flows having
the f-profiles just described and those obeying
the “similar” laminar boundary-layer equations
by calling the former ‘‘artificial” and the latter
“real”. Then Table 4 relates to artificial flows,
while Tables 1, 2 and 3, containing the solutions
obtained by other authors, relate to real flows.

The exact solutions for the artificial flow may
serve as approximate solutions for the real flows
if we assume that the only information about the
velocity profile which influences b, is contained
in the specifications of the three terms: f,, f; and

.. We shall now make use of this assumption
to derive new solutions for real flows with
B =0 (the flat plate) and 8 =1 (the two-
dimensional stagnation point). Since some
exact solutions are available for these flows,
(Tables 2 and 3), comparison with these will
enable the accuracy of the approximation pro-
cedure to be discerned. Some solutions for other
B-values are also derived.

Procedure. The solutions will be expressed in
the same terms as those in Figs. 2 and 3, i.e.
as plots of ¢~2/3 b /B vs. B for various values of
o (see Section 3.2). Their deduction from the
data in Table 3 proceeds as follows:

(i) For the 8 in question, choose a value of
o

(i) Obtain the corresponding value of f’
from the exact solutions of the velocity
equation tabulated in Paper 2.
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(iii) Choose a value of a.

(iv) Hence evaluate J from equation (52) and
K from equation (53).

(v) Use the J and K values, in conjunction
with Table 3, to give a value of I.

(vi) Hence obtain b,/B from equation (51),
and so B from equation (26).

(vii) Finally calculate o—¥/3b'/B.

Results. The approximate solutions obtained
by this means are presented as full curves in
Figs. 5 and 6, valid respectively for 8 = 0 and
B = 1 and for various values of ¢, and in Fig. 7,
valid for ¢ = 0-7 and various values of B. The

D. B. SPALDING and H. L. EVANS

points marked on the graph represent exact
solutions taken from Tables 1, 2 and 3. The
o or B values for the curves and the points are
indicated on the diagram. Only values of ¢ of
0-7 and above are considered.

The curves marked o = oo, though derived by
the above procedure, may be regarded as exact.
They correspond to the case in which the
b-boundary layer is very much thinner than the
velocity boundary layer, so that the velocity
profile may be regarded as linear throughout the
important region. This situation corresponds to
a K-value of zero.

Table 4(a). Values for 1 for various J and K obtained from evaluation of equation (51)

Jolk30| 25 | 20 | 13 i 10 | 08 ‘ 06 = 04 02 (00K | J
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~12 | 09643 | 10124 | 1-0724 | 11508 12602 | 1-3186 | 1-3903 | 14820 ] 606 | 17953 12
<10 08910 | 09325 | 09840 | 1-0506 11427 | 11913 | 12506 | 13258 L4267 | 15766 | 10
—08 08251 | 0-8609 | 0:9050 ' 09618 | 1-0394 | 1:0800 | 11293 1-1910 | 12729 | 13923 | —08
~06 i0~7656 07966 | 08346 08829 | 09485 | 09825 | 10233 | 10742 ‘ 11408 | 12364 “ :%é
—04 ‘0-7119 0-7387 | 07714 {0-8127 | 0-8682 {0~8967 09307 | 0:9727 §1-0271 11037 —04
~02 1 0-6633 | 06866 | 07147 i0-7501 j0-7978 08210 | 08494 038842 | 09286 | 0-9903 l “§E$
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Table 4(d). Values for I for various J and K obtained from evaluation of equation (56)

T |
J K 00 —01 —02 —03 —0-4 —-05 —-06 —0-8 \ -0 ; =20 -30 —40 | -50K J
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FIG. 5. 0~V3 (b{/B) vs. B for = 0 and various ¢ deduced from Table 4. Points indicate exact solutions from
Tables 1 and 2 (O ¢ = 07; (] o = 1-0; A o = 2:0). Compare with Fig. 2.
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Discussion. Comparison of the points with
the corresponding curves in Figs. 5 and 6 shows
that the points lie on or close to the curves for
large values of ¢ and moderate values of B, but
tend to lie above them for the smaller values of o,
particularly as B tends to — 1. However, the
deviations are never large, not exceeding 10 per
cent if B does not fall below — 0-9, and being
within 5 per cent over most of the range. Fig. 7
reveals that, for o =0-7, the discrepancy
increases slightly as g increases.

Since very low values of B are rare in practice
(the authors have only encountered values
smaller than — 09 in studies of the burning of
steel in oxygen jets), the approximate values of
the ordinate quantity may be regarded as quite
acceptable for most purposes.

Comparison of Figs. 2 and 3, on the one hand,
with Figs. 5, 6 and 7 on the other, shows that a
great deal of previously uncharted territory has
been covered. Moreover, corresponding charts
can be derived from the data in Table 3 for any
other value of B or ¢. It is clear that the neglect
of higher terms than the second in the expansion
of f” permits a large amount of (approximate)
information to be obtained from quite a modest
amount of computation.

The reason for the divergence between the
approximate and the exact solutions for real
flows is not hard to see. Qur basic assumption
requires that the h-boundary layer should be
much thinner than the velocity boundary layer
(4, < 8,); this is valid for large o, but not
for small o. Moreover the manner in which we
have “horizontalized” the velocity profile (Fig.
4a) causes the assumed profile to differ appreci-
ably from the real one when mass is being
transferred out of the fluid at a high rate
(B-- — 1). Tt is possible that a different escape
may be found from the convergence difficulty
described in Section 4.3 that will involve less
serious inaccuracy in this region.

One interesting feature of the solutions is
that there is no tendency for the influence of
B on g to disappear as o becomes large; instead
the curves take up an asymptotic shape which is
independent of both 8 and ¢. This means that
even for diffusion in liquids, the mass transfer
conductance is appreciably affected by B. The
effect can be fairly well represented by the

D. B. SPALDING and H. L. EVANS

formula:

g
g =+ B)-o4 (57
where g* is the value of g valid for B = 0 for
the o and B values which are in question.
This formula is more exact than the logarithmic
one used in the older literature (e.g. [16]) viz.

g _Ind+ B

g* B

(58)

5. FORMULATION OF THE “SIMILAR”
SOLUTIONS AS AUXILIARY FUNCTIONS
FOR MORE GENERAL METHODS

We have mentioned above that the “similar”
solutions of the b-equation are chiefly of interest
because they provide the auxiliary functions
which are needed in solving “non-similar”
problems; they act as bait enabling us to catch
larger and more interesting fish.

The general methods for solving mass transfer
problems will be described in later papers of
the present series. In the present section, we
merely re-arrange the solutions already presented
in the form which the general methods require.

It will appear that the general methods fall
into two classes (they are the classes designated
I and II by Smith and Spalding {17]). Corres-
pondingly the data from the similar solutions
are required in two different forms. Section 5.1
provides data suitable for the Class I method of
solving general mass transfer problems; section
5.2 provides data suitable for the Class II
method.

5.1. First re-presentation of the similar-solution
data

Although we do not intend to explain the
Class I method at this point, it may be helpful
to remark that it has much in common with that
presented in Paper 1. There, it may be
remembered, the relations between quantities
such as (ug/v) (d8%/dx) and (8%/v) (dug/dx)
proved to be important where § represented ‘“a”
thickness of the velocity boundary layer; it
should therefore occasion no surprise that we
here inquire into the relations between (ug/v)
(d4/dx) and (42/v) (due/dx) which hold for the
similar solutions.
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We have seen, in Sections 2-3, how to relate
these quantities to those obtained directly from
the solution of the fundamental differential
equation (25). Reflection concerning the number
of independent parameters thereupon reveals
that we may express the links between these
quantities in the form:

335

where F(. . .) is a function the form of which is
dictated by the similar solutions.

Figure 8 expresses the relation appearing in
(59) in the form of a graph with B as the para-
meter; the graph holds for the o-value of 0-7,
which is typical of gaseous systems. This value
has been chosen partly because of its practical
importance and partly because it is the only

Ug d4; —F 43 dug B o (59) o-value for which any considerable number of
v dx v du’ exact solutions are available. However the
12
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ordinate and abscissa have been multiplied to
0?3, thus rendering the curves relatively in-
sensitive to o. Fig. 8 is presented in two
parts: Fig. 8(a) exhibits negative values of B;
Fig. 8(b) exhibits positive values of B. The
curves have been derived from Table 4 by an
obvious extension of the procedure described in
Section 4.4, and then adjusted to pass through
the points representing exact solutions extracted
from Tables 1, 2 and 3. The curves thus represent

2
o2/3 ‘_’_4 d_lﬁ

80 100 120 140 160

2/3 A2
a4, dug

y dx

P for e = 070 < B < 10.

the best estimates which we can make at the
present time of the exact relation between the
quantities in question. Were a greater number
of exact solutions of the similar boundary-layer
equations available, for real flows, we should not
have had to make use of Table 4 at all.
Discussion. Without anticipating the later
publication which is to deal comprehensively
with the Class I method, only a few remarks
can be made about the form of Fig. 8. The first
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is that it has roughly the same shape as one
appearing in Paper 1 of the present series;
there 3, took the place occupied by 4, in Fig. 8,
and the group vsd,/v replaced B.

Secondly it should be mentioned that the
line for B = 0 has already appeared in a publica-
tion by Smith and Spalding [17] dealing with
heat transfer in laminar boundary layers;
corresponding lines for other values of ¢ can
be found in a report by Smith and Shah [18].
Finally, we remark that an early and rough
version of Fig. 8, for positive values of B only,
has been published by Spalding and Smith [19].

Of course it is possible to plot many graphs
of the type shown in Fig. 8 by the use of Table
4 and of the exact solutions of the velocity
equation; that for ¢ = 0-7 is merely an example.

5.2. Second re-presentation of the similar-
solution data

The Class II procedure which is to be des-
cribed in a later paper in the series is an extension
to finite mass transfer of that of Spalding [14].
The former publication was valid for heat
transfer only (or mass transfer with B ~ 0);
nevertheless we shall here represent the similar-
solution data in the same co-ordinate system as
was introduced there. Without proof or present
explanation, we state that this implies the plotting
of the quantity Y versus the quantity X for
various values of B, and also the plotting of the
quantity Z versus the quantity W for various
values of B.

Definitions and connecting relations. The
quantities X, Y, Z and W are related to other
quantities already encountered by the following
relations. In each case, that designated by (a) can
be regarded as the definition, that designated
(b) expresses the quantity in terms of quantities
appearing in the similar solutions, (c) expresses
it in terms of the quantities 7, J and K, while
(d) relates it to quantities appearing in the
conventional heat transfer literature.

The relations are:

_ A484 dug USA4
= dx T
rer B

0

= T b’

]

(602)

(60b)

= — 4K (60¢)
Eu (vsx/v)/+/Re
~ (Nuj+/Re) (c,n/Re/2) — Nuj+/Re (60d)
_ p {8\ d e 3/2
r= ) S ew
= ; o fy (B/by) (61b)
=or (61c)
3 (1 + Eu)(c;v/Ref2)
—3° (Nu/+/ Re)? (61d)
_p [8,\¥2 d .
=y (u“G) gy (e (622)
3 g 1/2 1+B 3/2 b; B)3/2
) ( (;3,/2 Go/B) (62b)
3 1/2 1 3/2
- (8) (} —J ) (62¢)
3 2 1/2
- (2) {F(ij}
{(Nu/+/Re) + o(vsx/v)/+/Re}¥?
(¢;+/Re2)'2 — (62d)
W=t G (6%)
1 BY\e(b' | BYL2f!!
= - (63b)
—4 1 12
:EﬁK(j—J) (63¢)
_ 2 1/2 Eu (sx/v)
B {0(1 + E")} {Cf\/Re/z N \/Re}

Nuj+/Re + o (vsx/v)/+/Re)1/?
{ ¢4/ Re[2 } - (63d)

Once the definitions (a) are accepted, the
other relations (b, c, d) follow from equations
and definitions to be found elsewhere in this
paper. For completeness we append the corres-
ponding relations for the driving force B; they
are:

B = pusdyfy (642)
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——ofl3) (64b)

=—1J (64c)
(esx/o)fy/ Re

Nuj\/Re * (64d)

Graphical representation. Inspection of equa-
tions (60c), (61c), (62c), (63c) and (64c) shows
that to every set of values of I, J, and K, there
corresponds a set of values of X, Y, Z, Wand B.
Moreover I, J and K are linked via equation

and H. L. EVANS

(51), which is expressed quantitatively by Table
4. It follows that the data of Table 4 can be
cross-plotted in various ways.

The manner of cross-plotting which we choose
is shown in Figs. 9 and 10. In the former, Y is
plotted vs. X for various values of B; in the
latter Z is plotted vs. W for various values of B.

Discussion. 1t would be inappropriate here to
discuss the significance and utility of Figs. 9 and
10; these matters will be taken up in the later
publications already referred to.
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Fio. 9. X vs. Y with B as parameter.
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35 T

FiG. 10. Z vs. W with B as parameter.

6. CONCLUSIONS
(a) The differential equation for the distribu-
tion of a conserved property P in a laminar
boundary layer has “‘similar” solutions pro-
vided: (i) that the velocity boundary layers are
*““similar”, (ii) that the values of P in the fluid
adjacent to the interface and in the transferred

Z*

substance, Ps and Pr are related to the stream
velocity ug in accordance with equation (20).
(b) A survey has been made, and presented in
Tables 1, 2 and 3 and in Figs. 2 and 3, of the
relatively few exact solutions of the problem
which are available in the literature. They are
all for the case in which Ps and Py are uniform.
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(c) New solutions have been obtained by
numerical quadrature for stream-function distri-
butions characterized by three terms of a poly-
nomial expansion (equation (48)). These have
been used to generate new approximate solutions
for real flows. Agreement with the exact solutions
is mostly within a few per cent. The number of
new solutions which can be generated from the
tables greatly exceeds the number which have
hitherto been available.

(d) The error in the approximate solutions is
thought to stem in part from a modification to
the three-term stream function distribution which
has been introduced so as to prevent divergence
of an integral. It is possible that less inaccurate
modifications can be found.

(e) The new solutions have been displayed, in
Figs. 8, 9 and 10, in ways which permit their
use in the solution of non-similar mass transfer
problems.

(f) The effect of mass transfer on the value of
the conductance can be approximately repre-
sented, over a fairly wide range of conditions,
by the equation: g/g* = (1 + B)~*4

7. APPEAL

We here repeat the appeal made at the end of
Paper 2 of the series. Conscious that our survey
of the world’s mass transfer literature has. been
incomplete, we ask readers to tell us of exact
constant-property solutions which we have
missed. We shall be particularly grateful to learn
of current computational programmes in this
field.
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